File size: 8,460 Bytes
448903c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import pandas as pd
import requests
from io import BytesIO
from io import StringIO
from langchain_core.tools import tool
from langchain_community.retrievers import WikipediaRetriever
from langchain_community.document_loaders import ArxivLoader
from langchain_community.retrievers import BM25Retriever
from langchain_core.documents import Document
from duckduckgo_search import DDGS
from markitdown import MarkItDown

# --------------- Math Tools ---------------- #
@tool
def add_numbers(a: int, b: int) -> int:
    """Add two numbers.
    
    Args:
        a (int): The first number.
        b (int): The second number.
    """
    return a + b

@tool
def add_numbers_in_list(numbers: list[float]) -> float:
    """Add all numbers in a list.
    Always use this tool for summing numerical values, instead of doing math directly in the response.
    
    Args:
        numbers (list[float]): A list of numbers to add.
    """
    return sum(numbers)

# @tool
# def web_search(query: str) -> str:
#     """Perform a web search using DuckDuckGo.
    
#     Args:
#         query (str): The search query.
        
#     Returns:
#         str: The search results.
#     """
#     search_tool = DuckDuckGoSearchRun()
#     return search_tool.invoke(query)

@tool
def web_search(query: str) -> str:
    """
    Perform a web search using DuckDuckGo. Visit the top ranked page,
    apply chunking in page results, perform similarity search, and return
    the top results content.

    Args:
        query (str): The search query.
    Returns:
        Document: The top results from the ranking, in langchain_core.documents.Document
                         objects having fields 'page_content' with the chunk content and 'metadata'.
    """
    def _chunk_text(text, chunk_size_words=1000, overlap_words=100):
        """
        Split text into chunks of specified size with overlap.
        Args:
            text (str): The text to be chunked.
            chunk_size (int): The size of each chunk.
            overlap (int): The number of overlapping characters between chunks.
        Returns:
            list: A list of text chunks.
        """
        words = text.split()
        chunks = []
        for i in range(0, len(words), chunk_size_words - overlap_words):
            chunk = " ".join(words[i:i + chunk_size_words])
            chunks.append(chunk)
        return chunks
    
    # STEP 1: Find the most relevant webpage
    results = DDGS().text(query, max_results=1)
    top_rank_page = results[0] if results else None
    if not top_rank_page:
        return "No relevant results found for the query."

    # STEP 2: Extract the content of the webpage
    md = MarkItDown(enable_plugins=True)
    md_result = md.convert(top_rank_page['href'])

    page_content = md_result.text_content

    # STEP 3: Apply chunking
    chunks = _chunk_text(page_content)

    # STEP 4: Apply ranking in chunks
    list_of_docs = [
        Document(page_content = chunk, metadata = {"source": top_rank_page['href'], "title": top_rank_page['title']})
        for chunk in chunks
    ]

    retriever = BM25Retriever.from_documents(list_of_docs)
    matched = retriever.invoke(query)

    return matched[0]

# TODO:
# Maybe don't return the summary, but the full document?
@tool
def wikipedia_search(query: str) -> str:
    """
    Search Wikipedia for a given query and return a summary of the top result.

    Args:
        query (str): The search term.

    Returns:
        str: A summary of the most relevant Wikipedia entry.
    """
    wikipedia_retriever = WikipediaRetriever(load_max_docs=1)

    documents = wikipedia_retriever.get_relevant_documents(query)
    if not documents:
        return "No relevant Wikipedia articles found."

    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" title="{doc.metadata.get("title", "")}"/>\n{doc.metadata["summary"]}\n</Document>'
            for doc in documents
        ])
    
    # Return the content of the top document
    return formatted_search_docs

@tool
def arxiv_search(query: str) -> str:
    """
    Search Arxiv for academic papers based on a query and return summaries of top results.

    Args:
        query (str): The search query for Arxiv.

    Returns:
        str: Summary of the top few relevant papers from Arxiv.
    """
    try:
        loader = ArxivLoader(query=query, load_max_docs=2)
        documents = loader.load()
        
        if not documents:
            return "No relevant papers found on Arxiv."

        # Format and return top paper summaries
        results = []
        for doc in documents:
            title = doc.metadata.get("Title", "No Title")
            published = doc.metadata.get("Published", "Unknown date")
            url = doc.metadata.get("entry_id", "No URL")
            summary = doc.page_content[:500]  # limit summary length

            results.append(f"Title: {title}\nPublished: {published}\nURL: {url}\nSummary: {summary}\n")

        return "\n---\n".join(results)

    except Exception as e:
        return f"An error occurred while searching Arxiv: {str(e)}"
    
@tool
def check_commutativity(table_str: str) -> str:
    """
    Given a binary operation table (in markdown format), returns the subset of elements 
    involved in counter-examples to commutativity, sorted alphabetically.
    
    Args:
        table_str (str): Markdown table defining the operation * on a finite set.

    Returns:
        str: Comma-separated list of elements in the counter-example set, alphabetically sorted.
    """
    # Read the table using pandas
    df = pd.read_csv(StringIO(table_str), sep="|", skipinitialspace=True, engine='python')

    # Drop empty columns due to leading/trailing pipes
    df = df.dropna(axis=1, how="all")
    df.columns = [c.strip() for c in df.columns]
    df = df.dropna(axis=0, how="all")

    # Extract header and values
    elements = df.columns[1:]
    df.index = df[df.columns[0]]
    df = df.drop(df.columns[0], axis=1)

    # Check commutativity: a*b == b*a
    counterexample_elements = set()
    for x in elements:
        for y in elements:
            if df.loc[x, y] != df.loc[y, x]:
                counterexample_elements.add(x)
                counterexample_elements.add(y)

    return ", ".join(sorted(counterexample_elements))

@tool
def extract_sales_data_from_excel(url: str) -> str:
    """
    Downloads and extracts sales data from an Excel file at the given URL.
    Returns the contents of the first sheet as a markdown-formatted string.
    """
    try:
        response = requests.get(url)
        response.raise_for_status()

        excel_file = BytesIO(response.content)
        df = pd.read_excel(excel_file)

        # Optional: Remove unnamed columns often created by Excel
        df = df.loc[:, ~df.columns.str.contains('^Unnamed')]

        # Convert all numeric columns to float
        for col in df.select_dtypes(include=["number"]).columns:
            df[col] = df[col].astype(float)

        return df.to_string(index=False)
    
    except Exception as e:
        return f"Failed to process Excel file from URL: {str(e)}"

@tool
def extract_transcript_from_youtube(url: str) -> str:
    """
    Extracts the transcript from a YouTube video given its URL.

    Args:
        url (str): The YouTube video URL.
    Returns:
        str: The transcript of the video, or an error message if extraction fails.
    """
    transcript_str = "### Transcript"
    md = MarkItDown(enable_plugins=True)

    try:
        result = md.convert(url)
    except Exception as e:
        return f"Failed to extract transcript from YouTube video: {str(e)}"

    parts = result.text_content.split(transcript_str)
    if len(parts) < 2:
        return result.text_content
    
    transcript = transcript_str + "\n" + parts[1]
    return transcript.strip()

# @tool
# def extract_transcript_from_audio(url: str) -> str:
#     """
#     Extracts the transcript from an audio file given its URL.
#     Supported formats: mp3, wav.

#     Args:
#         url (str): The URL of the audio file.
#     Returns:
#         str: The transcript of the audio file, or an error message if extraction fails.
#     """
#     md = MarkItDown(enable_plugins=True)

#     try:
#         result = md.convert(url)
#     except Exception as e:
#         return f"Failed to extract transcript from audio: {str(e)}"
    
#     return result.text_content