Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import threading | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
# Load the model and tokenizer locally | |
model_name = "Qwen/Qwen3-0.6B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") | |
# Define the function to handle chat responses | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
# Prepare the prompt by combining history and system messages | |
if system_message!= "": | |
msg = [ | |
{"role": "system", "content": system_message} | |
] | |
else: | |
msg = [] | |
for user_input, assistant_response in history: | |
msg.extend( | |
[ | |
{"role": "user", "content": user_input}, | |
{"role": "assistant", "content": assistant_response} | |
] | |
) | |
msg.append({"role": "user", "content": message}) | |
prompt = tokenizer.apply_chat_template( | |
msg, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
# Tokenize the input prompt | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
# Use a thread to run the generation in parallel | |
generation_thread = threading.Thread( | |
target=model.generate, | |
kwargs=dict( | |
inputs=inputs.input_ids, | |
max_length=max_tokens, | |
streamer=streamer, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
pad_token_id=tokenizer.eos_token_id, | |
), | |
) | |
generation_thread.start() | |
# Stream the tokens as they are generated | |
text_buffer = "" | |
for new_text in streamer: | |
text_buffer+=new_text | |
yield text_buffer | |
# Create the Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="", label="System message"), | |
gr.Slider(minimum=1, maximum=16384, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
] | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
demo.launch() |