Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
import pandas as pd
|
4 |
from datasets import Dataset
|
5 |
from transformers import (
|
@@ -8,8 +8,7 @@ from transformers import (
|
|
8 |
TrainingArguments,
|
9 |
Trainer
|
10 |
)
|
11 |
-
|
12 |
-
import gradio as gr
|
13 |
|
14 |
# load dataset
|
15 |
df = pd.read_csv("dataset.csv")
|
@@ -34,7 +33,6 @@ training_args = TrainingArguments(
|
|
34 |
logging_steps=10,
|
35 |
save_strategy="no",
|
36 |
learning_rate=2e-5,
|
37 |
-
# evaluation_strategy="no",
|
38 |
)
|
39 |
|
40 |
# train
|
@@ -44,33 +42,20 @@ trainer = Trainer(
|
|
44 |
train_dataset=tokenized_dataset,
|
45 |
tokenizer=tokenizer,
|
46 |
)
|
47 |
-
|
48 |
trainer.train()
|
49 |
|
50 |
-
|
51 |
-
# inference function for Gradio
|
52 |
def classify(text):
|
53 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
54 |
with torch.no_grad():
|
55 |
outputs = model(**inputs)
|
56 |
probs = torch.softmax(outputs.logits, dim=1).numpy()[0]
|
57 |
return {
|
58 |
-
"
|
59 |
-
"
|
60 |
}
|
61 |
|
62 |
-
#
|
63 |
-
# "zero-shot-classification",
|
64 |
-
# model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli"
|
65 |
-
# )
|
66 |
-
|
67 |
-
# def classify(text, labels):
|
68 |
-
# labels = [label.strip() for label in labels.split(",")]
|
69 |
-
# result = classifier(text, candidate_labels=labels)
|
70 |
-
# return {label: round(score, 4) for label, score in zip(result["labels"], result["scores"])}
|
71 |
-
|
72 |
-
|
73 |
-
# Gradio interface
|
74 |
demo = gr.Interface(
|
75 |
fn=classify,
|
76 |
inputs=gr.Textbox(lines=3, label="ข้อความ"),
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
import pandas as pd
|
4 |
from datasets import Dataset
|
5 |
from transformers import (
|
|
|
8 |
TrainingArguments,
|
9 |
Trainer
|
10 |
)
|
11 |
+
|
|
|
12 |
|
13 |
# load dataset
|
14 |
df = pd.read_csv("dataset.csv")
|
|
|
33 |
logging_steps=10,
|
34 |
save_strategy="no",
|
35 |
learning_rate=2e-5,
|
|
|
36 |
)
|
37 |
|
38 |
# train
|
|
|
42 |
train_dataset=tokenized_dataset,
|
43 |
tokenizer=tokenizer,
|
44 |
)
|
|
|
45 |
trainer.train()
|
46 |
|
47 |
+
# inference function for gradio
|
|
|
48 |
def classify(text):
|
49 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
50 |
with torch.no_grad():
|
51 |
outputs = model(**inputs)
|
52 |
probs = torch.softmax(outputs.logits, dim=1).numpy()[0]
|
53 |
return {
|
54 |
+
"No": float(probs[0]),
|
55 |
+
"Yes": float(probs[1]),
|
56 |
}
|
57 |
|
58 |
+
# gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
demo = gr.Interface(
|
60 |
fn=classify,
|
61 |
inputs=gr.Textbox(lines=3, label="ข้อความ"),
|