Spaces:
Build error
Build error
File size: 10,647 Bytes
3ae9a0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import random
import gradio as gr
import openai
import os
openai.api_key = os.environ.get("open_ai_key")
prompt = ['''
You are a ''',
'''
machine learning developer, trying to debug this code:
StackTrace:
Traceback (most recent call last):
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/process.py”, line 258, in _bootstrap
self.run()
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/process.py”, line 93, in run
self._target(*self._args, **self._kwargs)
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/site-packages/torch/utils/data/dataloader.py”, line 61, in _worker_loop
data_queue.put((idx, samples))
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/queues.py”, line 341, in put
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/reduction.py”, line 51, in dumps
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/site-packages/torch/multiprocessing/reductions.py”, line 121, in reduce_storage
RuntimeError: unable to open shared memory object </torch_54163_3383444026> in read-write mode at /opt/conda/conda-bld/pytorch_1525909934016/work/aten/src/TH/THAllocator.c:342
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/util.py”, line 262, in _run_finalizers
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/util.py”, line 186, in call
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/shutil.py”, line 476, in rmtree
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/shutil.py”, line 474, in rmtree
OSError: [Errno 24] Too many open files: ‘/tmp/pymp-sgew4xdn’
Process Process-1:
Traceback (most recent call last):
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/process.py”, line 258, in _bootstrap
self.run()
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/process.py”, line 93, in run
self._target(*self._args, **self._kwargs)
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/site-packages/torch/utils/data/dataloader.py”, line 61, in _worker_loop
data_queue.put((idx, samples))
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/queues.py”, line 341, in put
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/reduction.py”, line 51, in dumps
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/site-packages/torch/multiprocessing/reductions.py”, line 121, in reduce_storage
RuntimeError: unable to open shared memory object </torch_54163_3383444026> in read-write mode at /opt/conda/conda-bld/pytorch_1525909934016/work/aten/src/TH/THAllocator.c:342
Traceback (most recent call last):
File “/home/nlpgpu3/LinoHong/FakeNewsByTitle/main.py”, line 25, in
for mini_batch in trainloader :
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/site-packages/torch/utils/data/dataloader.py”, line 280, in next
idx, batch = self._get_batch()
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/site-packages/torch/utils/data/dataloader.py”, line 259, in _get_batch
return self.data_queue.get()
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/queues.py”, line 335, in get
res = self._reader.recv_bytes()
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/connection.py”, line 216, in recv_bytes
buf = self._recv_bytes(maxlength)
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/connection.py”, line 407, in _recv_bytes
buf = self._recv(4)
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/multiprocessing/connection.py”, line 379, in _recv
chunk = read(handle, remaining)
File “/home/nlpgpu3/anaconda3/envs/linohong3/lib/python3.6/site-packages/torch/utils/data/dataloader.py”, line 178, in handler
_error_if_any_worker_fails()
RuntimeError: DataLoader worker (pid 54163) exited unexpectedly with exit code 1.
Process finished with exit code 1
Question: Any idea how I can solve this problem?
Are follow up questions needed here: Yes
Follow up: Does your code run with less num_workers or num_workers=0?
Intermediate Answer: It worked when I set num_workers equals to 0, but doesn’t work greater or equal to 1
Follow up: Could you try to increase the shared memory and try setting num_workers>0 again?
Intermediate Answer: It worked! Can you explain what happened here?
So the final answer is: The error usually means that your system doesn’t provide enough shared memory for multiple workers (used via num_workers>0). Check the shared memory limitation of your system and try to increase it.
StackTrace:
RuntimeError: size mismatch (got input: [100000], target: [1000])
Question: Any idea how I can solve this problem?
Are follow up questions needed here: No
So the final answer is: I don’t know which line of code creates the shape mismatch but would guess it’s raised in the loss calculation: loss = criterion(output.view(-1), batch['input_ids'].view(-1).to(device)). Print the shapes of both tensors and make sure they are expected in the used criterion. PS you can post code snippets by wrapping them into three backticks ```, which would make your code easier to read.
StackTrace: ''',
'''
Question: ''',
'''
Are follow up questions needed here:''',]
def extract_answer(generated):
if '\n' not in generated:
last_line = generated
else:
last_line = generated.split('\n')[-1]
if ':' not in last_line:
after_colon = last_line
else:
after_colon = generated.split(':')[-1]
if ' ' == after_colon[0]:
after_colon = after_colon[1:]
if '.' == after_colon[-1]:
after_colon = after_colon[:-1]
return after_colon
def extract_question(generated):
if '\n' not in generated:
last_line = generated
else:
last_line = generated.split('\n')[-1]
if 'Follow up:' not in last_line:
print('we probably should never get here...' + generated)
if ':' not in last_line:
after_colon = last_line
else:
after_colon = generated.split(':')[-1]
if ' ' == after_colon[0]:
after_colon = after_colon[1:]
if '?' != after_colon[-1]:
print('we probably should never get here...' + generated)
return after_colon
def get_last_line(generated):
if '\n' not in generated:
last_line = generated
else:
last_line = generated.split('\n')[-1]
return last_line
def greenify(input):
return "\x1b[102m" + input + "\x1b[0m"
def yellowfy(input):
return "\x1b[106m" + input + "\x1b[0m"
def call_gpt(cur_prompt, stop):
ans = openai.Completion.create(
model="text-davinci-002",
max_tokens=256,
stop=stop,
prompt=cur_prompt,
temperature=0.7,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
returned = ans['choices'][0]['text']
print( greenify(returned), end='')
return returned
def initial_query_builder(language, code, question, intermediate = "\nIntermediate Answer:", followup = "\nFollow up:", finalans= '\nSo the final answer is:'):
cur_prompt = prompt[0] + language + prompt[1] + code + prompt[2] + question + prompt[3]
# print("prompt: ", cur_prompt, end ='')
ret_text = call_gpt(cur_prompt, intermediate)
print("ret_text: ", ret_text)
print("get_last_line(ret_text): ", get_last_line(ret_text))
return ret_text
def subsequent_query_builder(curr_prompt, external_answer, intermediate = "\nIntermediate Answer:", followup = "\nFollow up:", finalans= '\nSo the final answer is:'):
curr_prompt += intermediate + ' ' + external_answer + '.'
print(intermediate + ' ' + yellowfy(external_answer) + '.', end='' )
ret_text = call_gpt(curr_prompt, intermediate)
return ret_text
"""subsequent query builder:
the way to rebuild the prompt for each subsequent call:
1. every user response is 'intermediate answer'
2. until you hit 'so the final answer is: ' you're good
3.
"""
def prompt_builder(history, intermediate = "\nIntermediate Answer:", followup = "\nFollow up:", finalans= '\nSo the final answer is:'):
#set language
language = history[1][0]
#set stack trace
stacktrace = history[0][0]
#set question (hardcoded)
question = "Any idea how I can solve this problem?"
# initial prompt
curr_prompt = prompt[0] + language + prompt[1] + stacktrace + prompt[2] + question + prompt[3]
#set subsequent conversation thread
if len(history) > 2: #subsequent conversations have occurred
curr_prompt += history[1][1] ## get the first response to the stacktrace prompt
for conversation in history[2:]:
#grab intermediate answer
curr_prompt += intermediate + ' ' + conversation[0] + '.'
#grab the follow up
curr_prompt += conversation[1]
return curr_prompt
def chat(message, history):
history = history or []
print(len(history))
if len(history) == 0: ## just the stacktrace
response = "which language is this in? (python, java, c++, kotlin, etc.)"
elif len(history) == 1: ## stacktrace + just entered the language
# get stacktrace
stacktrace = history[0][0]
# get language
language = message
# set question (hardcoded for v1)
question = "Any idea how I can solve this problem?"
response = initial_query_builder(language, stacktrace, question)
else: # subsequent prompts
# get stacktrace
stacktrace = history[0][0]
# get language
language = history[1][0]
# set question (hardcoded for v1)
question = "Any idea how I can solve this problem?"
curr_prompt = prompt_builder(history)
response = subsequent_query_builder(curr_prompt, message)
# response = query_builder(language, stacktrace, question)
print("response: ", response)
history.append((message, response))
return history, history
chatbot = gr.Chatbot().style(color_map=("green", "pink"))
demo = gr.Interface(
chat,
[gr.Textbox(placeholder="enter your stacktrace here"), "state"],
[chatbot, "state"],
allow_flagging="never",
)
if __name__ == "__main__":
demo.launch(debug=True) |