kpranav22 commited on
Commit
1116bf1
·
verified ·
1 Parent(s): b017f11

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +204 -0
app.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+ from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel
7
+
8
+ # (Keep Constants as is)
9
+ # --- Constants ---
10
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
+
12
+ # --- Basic Agent Definition ---
13
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
14
+ class BasicAgent:
15
+ def __init__(self):
16
+ print("BasicAgent initialized.")
17
+ model = OpenAIServerModel(model_id="gpt-4o")
18
+ # Initialize the search tool
19
+ search_tool = DuckDuckGoSearchTool()
20
+ # Initialize Agent
21
+ self.agent = CodeAgent(
22
+ model = model,
23
+ tools=[search_tool]
24
+ )
25
+
26
+ def __call__(self, question: str) -> str:
27
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
28
+ final_answer = self.agent.run(question)
29
+ print(f"Agent returning fixed answer: {final_answer}")
30
+ return final_answer
31
+
32
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
33
+ """
34
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
35
+ and displays the results.
36
+ """
37
+ # --- Determine HF Space Runtime URL and Repo URL ---
38
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
39
+
40
+ if profile:
41
+ username= f"{profile.username}"
42
+ print(f"User logged in: {username}")
43
+ else:
44
+ print("User not logged in.")
45
+ return "Please Login to Hugging Face with the button.", None
46
+
47
+ api_url = DEFAULT_API_URL
48
+ questions_url = f"{api_url}/questions"
49
+ submit_url = f"{api_url}/submit"
50
+
51
+ # 1. Instantiate Agent ( modify this part to create your agent)
52
+ try:
53
+ agent = BasicAgent()
54
+ except Exception as e:
55
+ print(f"Error instantiating agent: {e}")
56
+ return f"Error initializing agent: {e}", None
57
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
58
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
59
+ print(agent_code)
60
+
61
+ # 2. Fetch Questions
62
+ print(f"Fetching questions from: {questions_url}")
63
+ try:
64
+ response = requests.get(questions_url, timeout=15)
65
+ response.raise_for_status()
66
+ questions_data = response.json()
67
+ if not questions_data:
68
+ print("Fetched questions list is empty.")
69
+ return "Fetched questions list is empty or invalid format.", None
70
+ print(f"Fetched {len(questions_data)} questions.")
71
+ except requests.exceptions.RequestException as e:
72
+ print(f"Error fetching questions: {e}")
73
+ return f"Error fetching questions: {e}", None
74
+ except requests.exceptions.JSONDecodeError as e:
75
+ print(f"Error decoding JSON response from questions endpoint: {e}")
76
+ print(f"Response text: {response.text[:500]}")
77
+ return f"Error decoding server response for questions: {e}", None
78
+ except Exception as e:
79
+ print(f"An unexpected error occurred fetching questions: {e}")
80
+ return f"An unexpected error occurred fetching questions: {e}", None
81
+
82
+ # 3. Run your Agent
83
+ results_log = []
84
+ answers_payload = []
85
+ print(f"Running agent on {len(questions_data)} questions...")
86
+ for item in questions_data:
87
+ task_id = item.get("task_id")
88
+ question_text = item.get("question")
89
+ if not task_id or question_text is None:
90
+ print(f"Skipping item with missing task_id or question: {item}")
91
+ continue
92
+ try:
93
+ submitted_answer = agent(question_text)
94
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
95
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
96
+ except Exception as e:
97
+ print(f"Error running agent on task {task_id}: {e}")
98
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
99
+
100
+ if not answers_payload:
101
+ print("Agent did not produce any answers to submit.")
102
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
103
+
104
+ # 4. Prepare Submission
105
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
106
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
107
+ print(status_update)
108
+
109
+ # 5. Submit
110
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
111
+ try:
112
+ response = requests.post(submit_url, json=submission_data, timeout=60)
113
+ response.raise_for_status()
114
+ result_data = response.json()
115
+ final_status = (
116
+ f"Submission Successful!\n"
117
+ f"User: {result_data.get('username')}\n"
118
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
119
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
120
+ f"Message: {result_data.get('message', 'No message received.')}"
121
+ )
122
+ print("Submission successful.")
123
+ results_df = pd.DataFrame(results_log)
124
+ return final_status, results_df
125
+ except requests.exceptions.HTTPError as e:
126
+ error_detail = f"Server responded with status {e.response.status_code}."
127
+ try:
128
+ error_json = e.response.json()
129
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
130
+ except requests.exceptions.JSONDecodeError:
131
+ error_detail += f" Response: {e.response.text[:500]}"
132
+ status_message = f"Submission Failed: {error_detail}"
133
+ print(status_message)
134
+ results_df = pd.DataFrame(results_log)
135
+ return status_message, results_df
136
+ except requests.exceptions.Timeout:
137
+ status_message = "Submission Failed: The request timed out."
138
+ print(status_message)
139
+ results_df = pd.DataFrame(results_log)
140
+ return status_message, results_df
141
+ except requests.exceptions.RequestException as e:
142
+ status_message = f"Submission Failed: Network error - {e}"
143
+ print(status_message)
144
+ results_df = pd.DataFrame(results_log)
145
+ return status_message, results_df
146
+ except Exception as e:
147
+ status_message = f"An unexpected error occurred during submission: {e}"
148
+ print(status_message)
149
+ results_df = pd.DataFrame(results_log)
150
+ return status_message, results_df
151
+
152
+
153
+ # --- Build Gradio Interface using Blocks ---
154
+ with gr.Blocks() as demo:
155
+ gr.Markdown("# Basic Agent Evaluation Runner")
156
+ gr.Markdown(
157
+ """
158
+ **Instructions:**
159
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
160
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
161
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
162
+ ---
163
+ **Disclaimers:**
164
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
165
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
166
+ """
167
+ )
168
+
169
+ gr.LoginButton()
170
+
171
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
172
+
173
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
174
+ # Removed max_rows=10 from DataFrame constructor
175
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
176
+
177
+ run_button.click(
178
+ fn=run_and_submit_all,
179
+ outputs=[status_output, results_table]
180
+ )
181
+
182
+ if __name__ == "__main__":
183
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
184
+ # Check for SPACE_HOST and SPACE_ID at startup for information
185
+ space_host_startup = os.getenv("SPACE_HOST")
186
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
187
+
188
+ if space_host_startup:
189
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
190
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
191
+ else:
192
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
193
+
194
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
195
+ print(f"✅ SPACE_ID found: {space_id_startup}")
196
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
197
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
198
+ else:
199
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
200
+
201
+ print("-"*(60 + len(" App Starting ")) + "\n")
202
+
203
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
204
+ demo.launch(debug=True, share=False)