SANGUO / llm /call_llm.py
konghuan's picture
1
d04a18c
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File : call_llm.py
@Time : 2023/10/18 10:45:00
@Author : Logan Zou
@Version : 1.0
@Contact : loganzou0421@163.com
@License : (C)Copyright 2017-2018, Liugroup-NLPR-CASIA
@Desc : 将各个大模型的原生接口封装在一个接口
'''
import openai
import json
import requests
import _thread as thread
import base64
import datetime
from dotenv import load_dotenv, find_dotenv
import hashlib
import hmac
import os
import queue
from urllib.parse import urlparse
import ssl
from datetime import datetime
from time import mktime
from urllib.parse import urlencode
from wsgiref.handlers import format_date_time
import zhipuai
from langchain.utils import get_from_dict_or_env
import websocket # 使用websocket_client
def get_completion(prompt :str, model :str, temperature=0.1,api_key=None, secret_key=None, access_token=None, appid=None, api_secret=None, max_tokens=2048):
# 调用大模型获取回复,支持上述三种模型+gpt
# arguments:
# prompt: 输入提示
# model:模型名
# temperature: 温度系数
# api_key:如名
# secret_key, access_token:调用文心系列模型需要
# appid, api_secret: 调用星火系列模型需要
# max_tokens : 返回最长序列
# return: 模型返回,字符串
# 调用 GPT
if model in ["gpt-3.5-turbo", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0613", "gpt-4", "gpt-4-32k"]:
return get_completion_gpt(prompt, model, temperature, api_key, max_tokens)
elif model in ["ERNIE-Bot", "ERNIE-Bot-4", "ERNIE-Bot-turbo"]:
return get_completion_wenxin(prompt, model, temperature, api_key, secret_key)
elif model in ["Spark-1.5", "Spark-2.0", "Spark-X1"]:
return get_completion_spark(prompt, model, temperature, api_key, appid, api_secret, max_tokens)
elif model in ["chatglm_pro", "chatglm_std", "chatglm_lite"]:
return get_completion_glm(prompt, model, temperature, api_key, max_tokens)
elif model in ["qwen-turbo", "qwen-plus", "qwen-max"]: # 阿里通义千问模型
return get_completion_ali(prompt, model, temperature, api_key, max_tokens)
else:
return "不正确的模型"
def get_completion_gpt(prompt : str, model : str, temperature : float, api_key:str, max_tokens:int):
# 封装 OpenAI 原生接口
if api_key == None:
api_key = parse_llm_api_key("openai")
openai.api_key = api_key
# 具体调用
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature, # 模型输出的温度系数,控制输出的随机程度
max_tokens = max_tokens, # 回复最大长度
)
# 调用 OpenAI 的 ChatCompletion 接口
return response.choices[0].message["content"]
def get_access_token(api_key, secret_key):
"""
使用 API Key,Secret Key 获取access_token,替换下列示例中的应用API Key、应用Secret Key
"""
# 指定网址
url = f"https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id={api_key}&client_secret={secret_key}"
# 设置 POST 访问
payload = json.dumps("")
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json'
}
# 通过 POST 访问获取账户对应的 access_token
response = requests.request("POST", url, headers=headers, data=payload)
return response.json().get("access_token")
def get_completion_wenxin(prompt : str, model : str, temperature : float, api_key:str, secret_key : str):
# 封装百度文心原生接口
if api_key == None or secret_key == None:
api_key, secret_key = parse_llm_api_key("wenxin")
# 获取access_token
access_token = get_access_token(api_key, secret_key)
# 调用接口
url = f"https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant?access_token={access_token}"
# 配置 POST 参数
payload = json.dumps({
"messages": [
{
"role": "user",# user prompt
"content": "{}".format(prompt)# 输入的 prompt
}
]
})
headers = {
'Content-Type': 'application/json'
}
# 发起请求
response = requests.request("POST", url, headers=headers, data=payload)
# 返回的是一个 Json 字符串
js = json.loads(response.text)
return js["result"]
def get_completion_spark(prompt: str, model: str, temperature: float, api_key: str, appid: str, api_secret: str, max_tokens: int):
if api_key is None or appid is None or api_secret is None:
api_key, appid, api_secret = parse_llm_api_key("spark")
if model == "Spark-X1":
domain = "x1"
Spark_url = "wss://spark-api.xf-yun.com/v1/x1"
elif model == "Spark-1.5":
domain = "general"
Spark_url = "ws://spark-api.xf-yun.com/v1.1/chat"
else:
domain = "generalv2"
Spark_url = "ws://spark-api.xf-yun.com/v2.1/chat"
# 修改系统提示词中的角色抽取部分
system_prompt = """你是一个三国大乱斗系统的AI助手。你能提供以下功能。
系统功能:
1. 角色抽取:随机抽取三国人物卡并展示完整信息,包括:
- 角色名
- 角色特点
- 属性值
- 技能说明
2.对战规程介绍:
- 回合制对战规则:
- 每回合速度快的一方先出手
- 行动选择:每回合可选择普通攻击、使用技能、休息(回复1%体力和10灵力)
- 技能使用:需要支付相应消耗,无法支付则无法发动
- 伤害计算的逻辑:- 普通攻击伤害 = (攻击方攻击-防御方防御)/防御方耐力*2
- 技能附加效果(如增伤、减防、附加状态)独立计算。
- 胜负判定:体力降为0或以下即判负
3. 对战系统:为抽取的角色随机匹配对手进行回合制对战。"""
question = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
]
response = spark_main(appid, api_key, api_secret, Spark_url, domain, question, temperature, max_tokens)
return response
def get_completion_glm(prompt : str, model : str, temperature : float, api_key:str, max_tokens : int):
# 获取GLM回答
if api_key == None:
api_key = parse_llm_api_key("zhipuai")
zhipuai.api_key = api_key
response = zhipuai.model_api.invoke(
model=model,
prompt=[{"role":"user", "content":prompt}],
temperature = temperature,
max_tokens=max_tokens
)
return response["data"]["choices"][0]["content"].strip('"').strip(" ")
# def getText(role, content, text = []):
# # role 是指定角色,content 是 prompt 内容
# jsoncon = {}
# jsoncon["role"] = role
# jsoncon["content"] = content
# text.append(jsoncon)
# return text
# 星火 API 调用使用
answer = ""
class Ws_Param(object):
# 初始化
def __init__(self, APPID, APIKey, APISecret, Spark_url):
self.APPID = APPID
self.APIKey = APIKey
self.APISecret = APISecret
self.host = urlparse(Spark_url).netloc
self.path = urlparse(Spark_url).path
self.Spark_url = Spark_url
# 自定义
self.temperature = 0
self.max_tokens = 2048
# 生成url
def create_url(self):
# 生成RFC1123格式的时间戳
now = datetime.now()
date = format_date_time(mktime(now.timetuple()))
# 拼接字符串
signature_origin = "host: " + self.host + "\n"
signature_origin += "date: " + date + "\n"
signature_origin += "GET " + self.path + " HTTP/1.1"
# 进行hmac-sha256进行加密
signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'),
digestmod=hashlib.sha256).digest()
signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8')
authorization_origin = f'api_key="{self.APIKey}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"'
authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')
# 将请求的鉴权参数组合为字典
v = {
"authorization": authorization,
"date": date,
"host": self.host
}
# 拼接鉴权参数,生成url
url = self.Spark_url + '?' + urlencode(v)
# 此处打印出建立连接时候的url,参考本demo的时候可取消上方打印的注释,比对相同参数时生成的url与自己代码生成的url是否一致
return url
# 收到websocket错误的处理
def on_error(ws, error):
print("### error:", error)
# 收到websocket关闭的处理
def on_close(ws,one,two):
print(" ")
# 收到websocket连接建立的处理
def on_open(ws):
thread.start_new_thread(run, (ws,))
def run(ws, *args):
data = json.dumps(gen_params(appid=ws.appid, domain= ws.domain,question=ws.question, temperature = ws.temperature, max_tokens = ws.max_tokens))
ws.send(data)
# 收到websocket消息的处理
def on_message(ws, message):
try:
data = json.loads(message)
code = data['header']['code']
content = ''
if code != 0:
print(f'请求错误: {code}, {data}')
ws.close()
else:
choices = data["payload"]["choices"]
status = choices["status"]
text = choices['text'][0]
if ('reasoning_content' in text and '' != text['reasoning_content']):
reasoning_content = text["reasoning_content"]
print(reasoning_content, end="")
global isFirstcontent
isFirstcontent = True
if('content' in text and '' != text['content']):
content = text["content"]
if(True == isFirstcontent):
print("\n*******************以上为思维链内容,模型回复内容如下********************\n")
print(content, end="")
isFirstcontent = False
global answer
answer += content
if status == 2:
ws.close()
except Exception as e:
print(f"处理消息时出错: {str(e)}")
print(f"原始消息: {message}")
ws.close()
def gen_params(appid, domain, question, temperature, max_tokens):
"""
通过appid和用户的提问来生成请参数
"""
data = {
"header": {
"app_id": appid,
"uid": "1234"
},
"parameter": {
"chat": {
"domain": domain,
"temperature": temperature,
"max_tokens": max_tokens
}
},
"payload": {
"message": {
"text": question
}
}
}
return data
def spark_main(appid, api_key, api_secret, Spark_url, domain, question, temperature, max_tokens):
# 验证连接参数
if not all([appid, api_key, api_secret]):
raise ValueError("缺少必要的认证参数:appid, api_key, api_secret")
global answer
answer = "" # 重置全局变量
global isFirstcontent
isFirstcontent = False
wsParam = Ws_Param(appid, api_key, api_secret, Spark_url)
websocket.enableTrace(False) # 关闭详细日志
wsUrl = wsParam.create_url()
ws = websocket.WebSocketApp(wsUrl,
on_message=on_message,
on_error=on_error,
on_close=on_close,
on_open=on_open)
ws.appid = appid
ws.question = question
ws.domain = domain
ws.temperature = temperature
ws.max_tokens = max_tokens
# 设置超时时间
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
return answer
def parse_llm_api_key(model:str, env_file:dict()=None):
"""
通过 model 和 env_file 的来解析平台参数
"""
if env_file == None:
_ = load_dotenv(find_dotenv())
env_file = os.environ
if model == "openai":
return env_file["OPENAI_API_KEY"]
elif model == "wenxin":
return env_file["wenxin_api_key"], env_file["wenxin_secret_key"]
elif model == "spark":
return env_file["spark_api_key"], env_file["spark_appid"], env_file["spark_api_secret"]
elif model == "zhipuai":
return get_from_dict_or_env(env_file, "zhipuai_api_key", "ZHIPUAI_API_KEY")
# return env_file["ZHIPUAI_API_KEY"]
elif model == "ali":
return env_file["ali_api_key"]
else:
raise ValueError(f"model{model} not support!!!")
def get_completion_ali(prompt: str, model: str, temperature: float, api_key: str, max_tokens: int):
"""阿里通义千问大模型接口"""
if api_key is None:
api_key = parse_llm_api_key("ali")
url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
payload = {
"model": model,
"input": {
"messages": [
{
"role": "user",
"content": prompt
}
]
},
"parameters": {
"temperature": temperature,
"max_tokens": max_tokens
}
}
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 200:
return response.json()["output"]["text"]
else:
return f"请求失败: {response.text}"