File size: 11,880 Bytes
d232caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Welcome to the Second Lab - Week 1, Day 3\n",
    "### Edited version (rodrigo)\n",
    "\n",
    "Today we will work with lots of models! This is a way to get comfortable with APIs."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../../../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
    "            <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In this case "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
    "import json\n",
    "from zroddeUtils import llmModels, openRouterUtils\n",
    "from IPython.display import display, Markdown"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
    "request += \"Answer only with the question, no explanation.\"\n",
    "prompt = request\n",
    "model = llmModels.free_mistral_Small_31_24B"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "llmQuestion = openRouterUtils.getOpenrouterResponse(model, prompt)\n",
    "print(llmQuestion)\n",
    "#openRouterUtils.clearChatHistory()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "competitors = {} # In this dictionary, we will store the responses from each LLM\n",
    "                 # competitors[model] = llmResponse"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# In this case I need to delete the history because I will to ask the same question to different models\n",
    "openRouterUtils.clearChatHistory()\n",
    "\n",
    "# Set the model name which I'll use to get a response\n",
    "#model_name = llmModels.free_gemini_20_flash_exp\n",
    "model_name = llmModels.free_meta_Llama_4_Maverick\n",
    "\n",
    "# Use the same method to interact with the LLM as before\n",
    "llmResponse = openRouterUtils.getOpenrouterResponse(model_name, llmQuestion)\n",
    "\n",
    "# Display the response in a Markdown format\n",
    "display(Markdown(llmResponse))\n",
    "\n",
    "# Store the response in the competitors dictionary\n",
    "competitors[model_name] = {\"Number\":len(competitors)+1, \"Response\":llmResponse}\n",
    "\n",
    "# The competitors dictionary stores each model's response using the model name as the key.\n",
    "# The value is another dictionary with the model's assigned number and its response."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# In this case I need to delete the history because I will to ask the same question to different models\n",
    "openRouterUtils.clearChatHistory()\n",
    "\n",
    "# Set the model name which I'll use to get a response\n",
    "model_name = llmModels.free_nous_Hermes_3_Mistral_24B\n",
    "\n",
    "# Use the same method to interact with the LLM as before\n",
    "llmResponse = openRouterUtils.getOpenrouterResponse(model_name, llmQuestion)\n",
    "\n",
    "# Display the response in a Markdown format\n",
    "display(Markdown(llmResponse))\n",
    "\n",
    "# Store the response in the competitors dictionary\n",
    "competitors[model_name] = {\"Number\":len(competitors)+1, \"Response\":llmResponse}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# In this case I need to delete the history because I will to ask the same question to different models\n",
    "openRouterUtils.clearChatHistory()\n",
    "\n",
    "# Set the model name which I'll use to get a response\n",
    "model_name = llmModels.free_deepSeek_V3_Base\n",
    "\n",
    "# Use the same method to interact with the LLM as before\n",
    "llmResponse = openRouterUtils.getOpenrouterResponse(model_name, llmQuestion)\n",
    "\n",
    "# Display the response in a Markdown format\n",
    "display(Markdown(llmResponse))\n",
    "\n",
    "# Store the response in the competitors dictionary\n",
    "competitors[model_name] = {\"Number\":len(competitors)+1, \"Response\":llmResponse}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# In this case I need to delete the history because I will to ask the same question to different models\n",
    "openRouterUtils.clearChatHistory()\n",
    "\n",
    "# Set the model name which I'll use to get a response\n",
    "# Be careful with this model. Gemini 2.0  flash is a free model,\n",
    "# but some times it is not available and you will get an error.\n",
    "model_name = llmModels.free_gemini_20_flash_exp\n",
    "\n",
    "# Use the same method to interact with the LLM as before\n",
    "llmResponse = openRouterUtils.getOpenrouterResponse(model_name, llmQuestion)\n",
    "\n",
    "# Display the response in a Markdown format\n",
    "display(Markdown(llmResponse))\n",
    "\n",
    "# Store the response in the competitors dictionary\n",
    "competitors[model_name] = {\"Number\":len(competitors)+1, \"Response\":llmResponse}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# In this case I need to delete the history because I will to ask the same question to different models\n",
    "openRouterUtils.clearChatHistory()\n",
    "\n",
    "# Set the model name which I'll use to get a response\n",
    "model_name = llmModels.Gpt_41_nano\n",
    "\n",
    "# Use the same method to interact with the LLM as before\n",
    "llmResponse = openRouterUtils.getOpenrouterResponse(model_name, llmQuestion)\n",
    "\n",
    "# Display the response in a Markdown format\n",
    "display(Markdown(llmResponse))\n",
    "\n",
    "# Store the response in the competitors dictionary\n",
    "competitors[model_name] = {\"Number\":len(competitors)+1, \"Response\":llmResponse}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Loop through the competitors dictionary and print each model's name and its response,\n",
    "# separated by a line for readability. Finally, print the total number of competitors.\n",
    "for k, v in competitors.items():\n",
    "    print(f\"{k} \\n {v}\\n***********************************\\n\")\n",
    "\n",
    "print(len(competitors))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
    "Each model has been given this question:\n",
    "\n",
    "{llmQuestion}\n",
    "You will get a dictionary coled \"competitors\" with the name, number and response of each competitor. \n",
    "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
    "Respond with JSON, and only JSON, with the following format:\n",
    "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
    "\n",
    "Here are the responses from each competitor:\n",
    "\n",
    "{competitors}\n",
    "\n",
    "Do not base your evaluation on the model name, but only on the content of the responses.\n",
    "\n",
    "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(judge)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "openRouterUtils.chatWithOpenRouter(llmModels.Claude_37_sonnet, judge)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = \"Give me a breif argumentation about why you put them in this order.\"\n",
    "openRouterUtils.chatWithOpenRouter(llmModels.Claude_37_sonnet, prompt)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../../../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
    "            <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../../../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
    "            <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
    "            and common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
    "            to business projects where accuracy is critical.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "UV_Py_3.12",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}