Spaces:
Sleeping
Sleeping
File size: 19,724 Bytes
d232caa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Welcome to the Second Lab - Week 1, Day 3\n",
"\n",
"Today we will work with lots of models! This is a way to get comfortable with APIs."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
" <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
" </span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Start with imports - ask ChatGPT to explain any package that you don't know\n",
"# Course_AIAgentic\n",
"import os\n",
"import json\n",
"from collections import defaultdict\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"from anthropic import Anthropic\n",
"from IPython.display import Markdown, display"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Always remember to do this!\n",
"load_dotenv(override=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Print the key prefixes to help with any debugging\n",
"\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
"\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
" \n",
"if anthropic_api_key:\n",
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
"else:\n",
" print(\"Anthropic API Key not set (and this is optional)\")\n",
"\n",
"if google_api_key:\n",
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
"else:\n",
" print(\"Google API Key not set (and this is optional)\")\n",
"\n",
"if deepseek_api_key:\n",
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
"else:\n",
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
"\n",
"if groq_api_key:\n",
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
"else:\n",
" print(\"Groq API Key not set (and this is optional)\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
"request += \"Answer only with the question, no explanation.\"\n",
"messages = [{\"role\": \"user\", \"content\": request}]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"messages"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"openai = OpenAI()\n",
"response = openai.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" messages=messages,\n",
")\n",
"question = response.choices[0].message.content\n",
"print(question)\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"competitors = []\n",
"answers = []\n",
"messages = [{\"role\": \"user\", \"content\": question}]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# The API we know well\n",
"\n",
"model_name = \"gpt-4o-mini\"\n",
"\n",
"response = openai.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Anthropic has a slightly different API, and Max Tokens is required\n",
"\n",
"model_name = \"claude-3-7-sonnet-latest\"\n",
"\n",
"claude = Anthropic()\n",
"response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
"answer = response.content[0].text\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
"model_name = \"gemini-2.0-flash\"\n",
"\n",
"response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
"model_name = \"deepseek-chat\"\n",
"\n",
"response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
"model_name = \"llama-3.3-70b-versatile\"\n",
"\n",
"response = groq.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## For the next cell, we will use Ollama\n",
"\n",
"Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
"and runs models locally using high performance C++ code.\n",
"\n",
"If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
"\n",
"After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
"\n",
"You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
"\n",
"Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
"\n",
"`ollama pull <model_name>` downloads a model locally \n",
"`ollama ls` lists all the models you've downloaded \n",
"`ollama rm <model_name>` deletes the specified model from your downloads"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
" <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
" </span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!ollama pull llama3.2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ollama = OpenAI(base_url='http://192.168.1.60:11434/v1', api_key='ollama')\n",
"model_name = \"llama3.2\"\n",
"\n",
"response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# So where are we?\n",
"\n",
"print(competitors)\n",
"print(answers)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# It's nice to know how to use \"zip\"\n",
"for competitor, answer in zip(competitors, answers):\n",
" print(f\"Competitor: {competitor}\\n\\n{answer}\\n\\n\")\n"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"# Let's bring this together - note the use of \"enumerate\"\n",
"\n",
"together = \"\"\n",
"for index, answer in enumerate(answers):\n",
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
" together += answer + \"\\n\\n\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(together)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
"Each model has been given this question:\n",
"\n",
"{question}\n",
"\n",
"Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
"Respond with JSON, and only JSON, with the following format:\n",
"{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
"\n",
"Here are the responses from each competitor:\n",
"\n",
"{together}\n",
"\n",
"Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(judge)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Judgement time!\n",
"\n",
"openai = OpenAI()\n",
"response = openai.chat.completions.create(\n",
" model=\"o3-mini\",\n",
" messages=judge_messages,\n",
")\n",
"results = response.choices[0].message.content\n",
"print(results)\n",
"\n",
"# remove openai variable\n",
"del openai"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# OK let's turn this into results!\n",
"\n",
"results_dict = json.loads(results)\n",
"ranks = results_dict[\"results\"]\n",
"for index, result in enumerate(ranks):\n",
" competitor = competitors[int(result)-1]\n",
" print(f\"Rank {index+1}: {competitor}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## ranking system for various models to get a true winner\n",
"\n",
"cross_model_results = []\n",
"\n",
"for competitor in competitors:\n",
" judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
" Each model has been given this question:\n",
"\n",
" {question}\n",
"\n",
" Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
" Respond with JSON, and only JSON, with the following format:\n",
" {{\"{competitor}\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
"\n",
" Here are the responses from each competitor:\n",
"\n",
" {together}\n",
"\n",
" Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n",
" \n",
" judge_messages = [{\"role\": \"user\", \"content\": judge}]\n",
"\n",
" if competitor.lower().startswith(\"claude\"):\n",
" claude = Anthropic()\n",
" response = claude.messages.create(model=competitor, messages=judge_messages, max_tokens=1024)\n",
" results = response.content[0].text\n",
" #memory cleanup\n",
" del claude\n",
" else:\n",
" openai = OpenAI()\n",
" response = openai.chat.completions.create(\n",
" model=\"o3-mini\",\n",
" messages=judge_messages,\n",
" )\n",
" results = response.choices[0].message.content\n",
" #memory cleanup\n",
" del openai\n",
"\n",
" cross_model_results.append(results)\n",
"\n",
"print(cross_model_results)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"# Dictionary to store cumulative scores for each model\n",
"model_scores = defaultdict(int)\n",
"model_names = {}\n",
"\n",
"# Create mapping from model index to model name\n",
"for i, name in enumerate(competitors, 1):\n",
" model_names[str(i)] = name\n",
"\n",
"# Process each ranking\n",
"for result_str in cross_model_results:\n",
" result = json.loads(result_str)\n",
" evaluator_name = list(result.keys())[0]\n",
" rankings = result[evaluator_name]\n",
" \n",
" #print(f\"\\n{evaluator_name} rankings:\")\n",
" # Convert rankings to scores (rank 1 = score 1, rank 2 = score 2, etc.)\n",
" for rank_position, model_id in enumerate(rankings, 1):\n",
" model_name = model_names.get(model_id, f\"Model {model_id}\")\n",
" model_scores[model_id] += rank_position\n",
" #print(f\" Rank {rank_position}: {model_name} (Model {model_id})\")\n",
"\n",
"print(\"\\n\" + \"=\"*70)\n",
"print(\"AGGREGATED RESULTS (lower score = better performance):\")\n",
"print(\"=\"*70)\n",
"\n",
"# Sort models by total score (ascending - lower is better)\n",
"sorted_models = sorted(model_scores.items(), key=lambda x: x[1])\n",
"\n",
"for rank, (model_id, total_score) in enumerate(sorted_models, 1):\n",
" model_name = model_names.get(model_id, f\"Model {model_id}\")\n",
" avg_score = total_score / len(cross_model_results)\n",
" print(f\"Rank {rank}: {model_name} (Model {model_id}) - Total Score: {total_score}, Average Score: {avg_score:.2f}\")\n",
"\n",
"winner_id = sorted_models[0][0]\n",
"winner_name = model_names.get(winner_id, f\"Model {winner_id}\")\n",
"print(f\"\\n🏆 WINNER: {winner_name} (Model {winner_id}) with the lowest total score of {sorted_models[0][1]}\")\n",
"\n",
"# Show detailed breakdown\n",
"print(f\"\\n📊 DETAILED BREAKDOWN:\")\n",
"print(\"-\" * 50)\n",
"for model_id, total_score in sorted_models:\n",
" model_name = model_names.get(model_id, f\"Model {model_id}\")\n",
" print(f\"{model_name}: {total_score} points across {len(cross_model_results)} evaluations\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
" <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
" </span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
" <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
" and common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
" to business projects where accuracy is critical.\n",
" </span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|