VoiceStack / bot /bot_websocket_server.py
klentyboopathi's picture
updated
0186ea0
raw
history blame
6.34 kB
import os
from loguru import logger
from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from pipecat.services.ollama.llm import OLLamaLLMService
# from pipecat.services.fish.tts import FishAudioTTSService
# from pipecat.services.xtts.tts import XTTSService
from pipecat.transcriptions.language import Language
# from service.Dia.tts import DiaTTSService
from pipecat.processors.frameworks.rtvi import RTVIConfig, RTVIObserver, RTVIProcessor
from pipecat.serializers.protobuf import ProtobufFrameSerializer
from pipecat.transports.network.fastapi_websocket import (
FastAPIWebsocketParams,
FastAPIWebsocketTransport,
)
from pipecat.services.whisper.stt import WhisperSTTService
from pipecat.transports.network.websocket_server import (
WebsocketServerParams,
WebsocketServerTransport,
)
import aiohttp
from dotenv import load_dotenv
from service.Kokoro.tts import KokoroTTSService
# from service.orpheus.tts import OrpheusTTSService
# from service.chatterbot.tts import ChatterboxTTSService
# from pipecat.utils.tracing.setup import setup_tracing
SYSTEM_INSTRUCTION = f"""
"You are Gemini Chatbot, a friendly, helpful robot.
Your goal is to demonstrate your capabilities in a succinct way.
Your output will be converted to audio so don't include special characters in your answers.
Respond to what the user said in a creative and helpful way. Keep your responses brief. One or two sentences at most.
"""
load_dotenv(override=True)
# IS_TRACING_ENABLED = bool(os.getenv("ENABLE_TRACING"))
# # Initialize tracing if enabled
# if IS_TRACING_ENABLED:
# # Create the exporter
# otlp_exporter = OTLPSpanExporter()
# # Set up tracing with the exporter
# setup_tracing(
# service_name="pipecat-demo",
# exporter=otlp_exporter,
# console_export=bool(os.getenv("OTEL_CONSOLE_EXPORT")),
# )
# logger.info("OpenTelemetry tracing initialized")
async def run_bot_websocket_server(websocket_client):
# ws_transport = WebsocketServerTransport(
# params=WebsocketServerParams(
# serializer=ProtobufFrameSerializer(),
# audio_in_enabled=True,
# audio_out_enabled=True,
# add_wav_header=False,
# vad_analyzer=SileroVADAnalyzer(),
# session_timeout=60 * 3, # 3 minutes
# )
# )
ws_transport = FastAPIWebsocketTransport(
websocket=websocket_client,
params=FastAPIWebsocketParams(
audio_in_enabled=True,
audio_out_enabled=True,
add_wav_header=False,
vad_analyzer=SileroVADAnalyzer(),
serializer=ProtobufFrameSerializer(),
),
)
stt = WhisperSTTService(
model="smollm",
device="cpu",
compute_type="default",
language="en",
)
llm = OLLamaLLMService(
model="smoll",
# params=OLLamaLLMService.InputParams(temperature=0.7, max_tokens=1000),
)
# TTS = FishAudioTTSService(
# api_key=os.getenv("CARTESIA_API_KEY"),
# voice_id="79a125e8-cd45-4c13-8a67-188112f4dd22", # British Reading Lady
# )
# async with aiohttp.ClientSession() as session:
# TTS = XTTSService(
# voice_id="speaker_1",
# language=Language.EN,
# base_url="http://localhost:8000",
# aiohttp_session=session
# )
context = OpenAILLMContext(
[
{
"role": "system",
"content": SYSTEM_INSTRUCTION,
},
{
"role": "user",
"content": "Start by greeting the user warmly and introducing yourself.",
},
],
)
context_aggregator = llm.create_context_aggregator(context)
# RTVI events for Pipecat client UI
rtvi = RTVIProcessor(config=RTVIConfig(config=[]))
TTS = KokoroTTSService(
model_path=os.path.join(
os.path.dirname(__file__), "assets", "kokoro-v1.0.int8.onnx"
),
voices_path=os.path.join(os.path.dirname(__file__), "assets", "voices.json"),
voice_id="af",
sample_rate=16000,
)
# TTS = OrpheusTTSService(
# model_name="canopylabs/orpheus-3b-0.1-ft",
# sample_rate=16000,
# )
# TTS = ChatterboxTTSService(
# model_name="",
# sample_rate=16000,
# )
# TTS = DiaTTSService(
# model_name="nari-labs/Dia-1.6B",
# sample_rate=16000,
# )
pipeline = Pipeline(
[
ws_transport.input(),
rtvi,
stt, # STT
context_aggregator.user(),
llm,
TTS, # TTS
ws_transport.output(),
context_aggregator.assistant(),
]
)
task = PipelineTask(
pipeline,
params=PipelineParams(
enable_metrics=True,
allow_interruptions=True,
enable_usage_metrics=True,
),
# enable_turn_tracking=True,
# enable_tracing=IS_TRACING_ENABLED,
conversation_id="test",
observers=[RTVIObserver(rtvi)],
)
@rtvi.event_handler("on_client_ready")
async def on_client_ready(rtvi):
logger.info("Pipecat client ready.")
await rtvi.set_bot_ready()
# Kick off the conversation.
await task.queue_frames([context_aggregator.user().get_context_frame()])
@ws_transport.event_handler("on_client_connected")
async def on_client_connected(transport, client):
logger.info("Pipecat Client connected")
@ws_transport.event_handler("on_client_disconnected")
async def on_client_disconnected(transport, client):
logger.info("Pipecat Client disconnected")
await task.cancel()
@ws_transport.event_handler("on_session_timeout")
async def on_session_timeout(transport, client):
logger.info(f"Entering in timeout for {client.remote_address}")
await task.cancel()
runner = PipelineRunner()
await runner.run(task)