Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,9 @@ import subprocess
|
|
6 |
import pandas as pd
|
7 |
import torch, spaces
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
9 |
-
from smolagents import CodeAgent, HfApiModel
|
|
|
|
|
10 |
from huggingface_hub import InferenceClient, hf_hub_download
|
11 |
|
12 |
subprocess.run(["playwright", "install"], check=True)
|
@@ -15,40 +17,28 @@ subprocess.run(["playwright", "install"], check=True)
|
|
15 |
# --- Constants ---
|
16 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
17 |
|
18 |
-
class LocalLLM:
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
@spaces.GPU
|
42 |
-
def load_llm(hf_token):
|
43 |
-
model_id = "meta-llama/Llama-3.1-8B-Instruct"
|
44 |
-
tok = AutoTokenizer.from_pretrained(model_id, token=hf_token)
|
45 |
-
mod = AutoModelForCausalLM.from_pretrained(
|
46 |
-
model_id,
|
47 |
-
torch_dtype=torch.float16,
|
48 |
-
device_map="auto", # auto-distributes to GPU
|
49 |
-
token=hf_token
|
50 |
-
)
|
51 |
-
return pipeline("text-generation", model=mod, tokenizer=tok, max_new_tokens=512)
|
52 |
|
53 |
def check_token_access():
|
54 |
token = os.environ.get("HF_TOKEN", "")
|
@@ -71,10 +61,10 @@ def check_token_access():
|
|
71 |
|
72 |
# --- Basic Agent Definition ---
|
73 |
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
|
74 |
-
class BasicAgent:
|
75 |
-
def __init__(self):
|
76 |
print("BasicAgent initialized.")
|
77 |
-
print("ENV-HF_TOKEN-LEN", len(
|
78 |
check_token_access()
|
79 |
|
80 |
# Local test
|
@@ -96,9 +86,22 @@ class BasicAgent:
|
|
96 |
# See list of base tools in https://github.com/huggingface/smolagents/blob/main/src/smolagents/default_tools.py
|
97 |
|
98 |
# Initialize the agent
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
# self.agent = CodeAgent(
|
104 |
# model=model,
|
@@ -106,11 +109,34 @@ class BasicAgent:
|
|
106 |
# add_base_tools=True
|
107 |
# )
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
def __call__(self, question: str) -> str:
|
110 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
print(f"Agent returning its generated answer: {response}")
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
116 |
"""
|
@@ -119,6 +145,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
119 |
"""
|
120 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
121 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
|
|
122 |
|
123 |
if profile:
|
124 |
username= f"{profile.username}"
|
@@ -133,7 +160,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
133 |
|
134 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
135 |
try:
|
136 |
-
agent = BasicAgent()
|
137 |
except Exception as e:
|
138 |
print(f"Error instantiating agent: {e}")
|
139 |
return f"Error initializing agent: {e}", None
|
@@ -173,7 +200,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
173 |
print(f"Skipping item with missing task_id or question: {item}")
|
174 |
continue
|
175 |
try:
|
176 |
-
|
|
|
177 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
178 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
179 |
except Exception as e:
|
@@ -269,6 +297,7 @@ if __name__ == "__main__":
|
|
269 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
270 |
space_host_startup = os.getenv("SPACE_HOST")
|
271 |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
|
|
272 |
|
273 |
if space_host_startup:
|
274 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -286,8 +315,8 @@ if __name__ == "__main__":
|
|
286 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
287 |
|
288 |
# Test the agent
|
289 |
-
agent = BasicAgent()
|
290 |
-
agent.
|
291 |
|
292 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
293 |
demo.launch(debug=True, share=False)
|
|
|
6 |
import pandas as pd
|
7 |
import torch, spaces
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
9 |
+
# from smolagents import CodeAgent, HfApiModel
|
10 |
+
from smolagents.agent import LocalLLM, CodeAgent
|
11 |
+
from smolagents.message import MessageRole
|
12 |
from huggingface_hub import InferenceClient, hf_hub_download
|
13 |
|
14 |
subprocess.run(["playwright", "install"], check=True)
|
|
|
17 |
# --- Constants ---
|
18 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
19 |
|
20 |
+
# class LocalLLM:
|
21 |
+
# def __init__(self, pipe):
|
22 |
+
# self.pipe = pipe
|
23 |
|
24 |
+
# def generate(self, prompt, **kwargs):
|
25 |
+
# unsupported_keys = ["stop_sequences"] # Remove keys not accepted by HF pipelines
|
26 |
+
# cleaned_kwargs = {k: v for k, v in kwargs.items() if k not in unsupported_keys}
|
27 |
+
# # print(f"🧪 kwargs cleaned: {cleaned_kwargs.keys()}")
|
28 |
+
# try:
|
29 |
+
# outputs = self.pipe(prompt, **cleaned_kwargs)
|
30 |
+
# # print(f"🧪 Raw output from pipe: {outputs}")
|
31 |
+
# if isinstance(outputs, list) and isinstance(outputs[0], dict):
|
32 |
+
# out = outputs[0]["generated_text"]
|
33 |
+
# elif isinstance(outputs, list):
|
34 |
+
# out = outputs[0] # fallback if it's just a list of strings
|
35 |
+
# else:
|
36 |
+
# out = str(outputs)
|
37 |
+
# print("🧪 Final object to return:", type(out), out[:100])
|
38 |
+
# return {'role': 'assistant', 'content': [{'type':'text', 'text': out}]}
|
39 |
+
# except Exception as e:
|
40 |
+
# print(f"❌ Error in LocalLLM.generate(): {e}")
|
41 |
+
# raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def check_token_access():
|
44 |
token = os.environ.get("HF_TOKEN", "")
|
|
|
61 |
|
62 |
# --- Basic Agent Definition ---
|
63 |
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
|
64 |
+
class BasicAgent(LocalLLM):
|
65 |
+
def __init__(self, model_id="meta-llama/Llama-3.1-8B-Instruct", hf_token=None):
|
66 |
print("BasicAgent initialized.")
|
67 |
+
print("ENV-HF_TOKEN-LEN", len(hf_token), file=sys.stderr)
|
68 |
check_token_access()
|
69 |
|
70 |
# Local test
|
|
|
86 |
# See list of base tools in https://github.com/huggingface/smolagents/blob/main/src/smolagents/default_tools.py
|
87 |
|
88 |
# Initialize the agent
|
89 |
+
tok = AutoTokenizer.from_pretrained(model_id, token=hf_token)
|
90 |
+
mod = AutoModelForCausalLM.from_pretrained(
|
91 |
+
model_id,
|
92 |
+
torch_dtype=torch.float16,
|
93 |
+
device_map="auto", # auto-distributes to GPU
|
94 |
+
token=hf_token
|
95 |
+
)
|
96 |
+
self.pipe = pipeline(
|
97 |
+
"text-generation",
|
98 |
+
model=mod,
|
99 |
+
tokenizer=tok,
|
100 |
+
max_new_tokens=512,
|
101 |
+
temperature=0.0,
|
102 |
+
)
|
103 |
+
|
104 |
+
self.agent = CodeAgent(model=self, tools=[], add_base_tools=True)
|
105 |
|
106 |
# self.agent = CodeAgent(
|
107 |
# model=model,
|
|
|
109 |
# add_base_tools=True
|
110 |
# )
|
111 |
|
112 |
+
def _serialize_messages(self, messages):
|
113 |
+
prompt = []
|
114 |
+
for m in messages:
|
115 |
+
role = m['role'].value # "system" / "user" / "assistant"
|
116 |
+
text = "".join([c['text'] for c in m['content']])
|
117 |
+
prompt.append(f"{role}: {text}")
|
118 |
+
return "\n".join(prompt)
|
119 |
+
|
120 |
def __call__(self, question: str) -> str:
|
121 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
122 |
+
|
123 |
+
allowed = {"max_new_tokens", "temperature", "top_k", "top_p"}
|
124 |
+
gen_kwargs = {k: v for k, v in kwargs.items() if k in allowed}
|
125 |
+
prompt_str = (
|
126 |
+
self._serialize_messages(prompt)
|
127 |
+
if isinstance(prompt, list)
|
128 |
+
else prompt
|
129 |
+
)
|
130 |
+
outputs = self.pipe(prompt_str, **gen_kwargs)
|
131 |
+
response = outputs[0]["generated_text"]
|
132 |
+
# response = self.agent.run(question)
|
133 |
print(f"Agent returning its generated answer: {response}")
|
134 |
+
|
135 |
+
# wrap back into a chat message dict
|
136 |
+
return {
|
137 |
+
"role": MessageRole.ASSISTANT,
|
138 |
+
"content": [{"type": "text", "text": response}],
|
139 |
+
}
|
140 |
|
141 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
142 |
"""
|
|
|
145 |
"""
|
146 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
147 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
148 |
+
hf_token = os.getenv("HF_TOKEN")
|
149 |
|
150 |
if profile:
|
151 |
username= f"{profile.username}"
|
|
|
160 |
|
161 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
162 |
try:
|
163 |
+
agent = BasicAgent(hf_token=hf_token).agent
|
164 |
except Exception as e:
|
165 |
print(f"Error instantiating agent: {e}")
|
166 |
return f"Error initializing agent: {e}", None
|
|
|
200 |
print(f"Skipping item with missing task_id or question: {item}")
|
201 |
continue
|
202 |
try:
|
203 |
+
msg = agent.run(question_text)
|
204 |
+
submitted_answer = msg["content"][0]["text"]
|
205 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
206 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
207 |
except Exception as e:
|
|
|
297 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
298 |
space_host_startup = os.getenv("SPACE_HOST")
|
299 |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
300 |
+
hf_token = os.getenv("HF_TOKEN")
|
301 |
|
302 |
if space_host_startup:
|
303 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
315 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
316 |
|
317 |
# Test the agent
|
318 |
+
agent = BasicAgent(hf_token=hf_token).agent
|
319 |
+
agent.run("What is 2+2?")
|
320 |
|
321 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
322 |
demo.launch(debug=True, share=False)
|