Update app.py
Browse files
app.py
CHANGED
@@ -1,177 +1,23 @@
|
|
1 |
-
import os
|
2 |
-
from enum import Enum
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import inspect
|
6 |
-
import subprocess
|
7 |
-
import dateparser
|
8 |
-
from bs4 import BeautifulSoup
|
9 |
-
import regex
|
10 |
import pandas as pd
|
11 |
-
import torch
|
12 |
-
from functools import lru_cache
|
13 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
14 |
-
from smolagents import CodeAgent, WebSearchTool, WikipediaSearchTool, VisitWebpageTool, PythonInterpreterTool
|
15 |
-
import smolagents.tools as _tools
|
16 |
-
from smolagents.models import ChatMessage
|
17 |
-
# from huggingface_hub import InferenceClient, hf_hub_download
|
18 |
-
|
19 |
-
subprocess.run(["playwright", "install"], check=True)
|
20 |
-
|
21 |
-
print(dir(_tools))
|
22 |
|
23 |
# (Keep Constants as is)
|
24 |
# --- Constants ---
|
25 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
26 |
|
27 |
-
# class LocalLLM:
|
28 |
-
# def __init__(self, pipe):
|
29 |
-
# self.pipe = pipe
|
30 |
-
|
31 |
-
# def generate(self, prompt, **kwargs):
|
32 |
-
# unsupported_keys = ["stop_sequences"] # Remove keys not accepted by HF pipelines
|
33 |
-
# cleaned_kwargs = {k: v for k, v in kwargs.items() if k not in unsupported_keys}
|
34 |
-
# # print(f"🧪 kwargs cleaned: {cleaned_kwargs.keys()}")
|
35 |
-
# try:
|
36 |
-
# outputs = self.pipe(prompt, **cleaned_kwargs)
|
37 |
-
# # print(f"🧪 Raw output from pipe: {outputs}")
|
38 |
-
# if isinstance(outputs, list) and isinstance(outputs[0], dict):
|
39 |
-
# out = outputs[0]["generated_text"]
|
40 |
-
# elif isinstance(outputs, list):
|
41 |
-
# out = outputs[0] # fallback if it's just a list of strings
|
42 |
-
# else:
|
43 |
-
# out = str(outputs)
|
44 |
-
# print("🧪 Final object to return:", type(out), out[:100])
|
45 |
-
# return {'role': 'assistant', 'content': [{'type':'text', 'text': out}]}
|
46 |
-
# except Exception as e:
|
47 |
-
# print(f"❌ Error in LocalLLM.generate(): {e}")
|
48 |
-
# raise
|
49 |
-
|
50 |
-
def check_token_access():
|
51 |
-
token = os.environ.get("HF_TOKEN", "")
|
52 |
-
if not token:
|
53 |
-
print("❌ No token found")
|
54 |
-
return
|
55 |
-
headers = {"Authorization": f"Bearer {token}"}
|
56 |
-
url = "https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/resolve/main/config.json"
|
57 |
-
try:
|
58 |
-
r = requests.get(url, headers=headers, timeout=10)
|
59 |
-
print(f"🔍 Token test response: {r.status_code}")
|
60 |
-
if r.status_code == 200:
|
61 |
-
print("✅ Token access confirmed for gated model.")
|
62 |
-
elif r.status_code == 403:
|
63 |
-
print("❌ 403 Forbidden: Token does not have access.")
|
64 |
-
else:
|
65 |
-
print("⚠️ Unexpected status:", r.status_code)
|
66 |
-
except Exception as e:
|
67 |
-
print("❌ Token check failed:", e)
|
68 |
-
|
69 |
-
class CachedWebSearchTool(WebSearchTool):
|
70 |
-
@lru_cache(maxsize=128)
|
71 |
-
def run(self, query: str):
|
72 |
-
# identical queries return instantly
|
73 |
-
return super().run(query)
|
74 |
-
|
75 |
-
class CachedWikiTool(WikipediaSearchTool):
|
76 |
-
@lru_cache(maxsize=128)
|
77 |
-
def run(self, page: str):
|
78 |
-
return super().run(page)
|
79 |
-
|
80 |
# --- Basic Agent Definition ---
|
81 |
-
# ----- THIS IS
|
82 |
class BasicAgent:
|
83 |
-
def __init__(self
|
84 |
print("BasicAgent initialized.")
|
85 |
-
|
86 |
-
check_token_access()
|
87 |
-
|
88 |
-
# Local test
|
89 |
-
# client = InferenceClient(
|
90 |
-
# model="meta-llama/Llama-3.1-8B-Instruct",
|
91 |
-
# token=os.environ["HF_TOKEN"]
|
92 |
-
# )
|
93 |
-
# print(client.text_generation("Hello, my name is", max_new_tokens=20))
|
94 |
-
|
95 |
-
# Initialize the model
|
96 |
-
# model = HfApiModel(model_id="meta-llama/Llama-3.1-8B-Instruct",
|
97 |
-
# # format="text-generation",
|
98 |
-
# token=os.environ["HF_TOKEN"],
|
99 |
-
# max_tokens=2048,
|
100 |
-
# temperature=0.0
|
101 |
-
# )
|
102 |
-
|
103 |
-
# Initialize the tools other than the base tools
|
104 |
-
# See list of base tools in https://github.com/huggingface/smolagents/blob/main/src/smolagents/default_tools.py
|
105 |
-
|
106 |
-
# Download the model weights and build the pipeline
|
107 |
-
tok = AutoTokenizer.from_pretrained(model_id, token=hf_token)
|
108 |
-
mod = AutoModelForCausalLM.from_pretrained(
|
109 |
-
model_id,
|
110 |
-
torch_dtype=torch.float16,
|
111 |
-
device_map="auto", # auto-distributes to GPU
|
112 |
-
token=hf_token
|
113 |
-
)
|
114 |
-
self.pipe = pipeline(
|
115 |
-
"text-generation",
|
116 |
-
model=mod,
|
117 |
-
tokenizer=tok,
|
118 |
-
max_new_tokens=512,
|
119 |
-
return_full_text=False, # <— only get the completion, not the prompt + completion
|
120 |
-
# temperature=1.0,
|
121 |
-
)
|
122 |
-
# Introduce tools
|
123 |
-
wiki_tool = CachedWikiTool()
|
124 |
-
search_tool = CachedWebSearchTool()
|
125 |
-
python_tool = PythonInterpreterTool()
|
126 |
-
html_parse_tool = VisitWebpageTool()
|
127 |
-
# Initialize the agent
|
128 |
-
self.agent = CodeAgent(model=self,
|
129 |
-
tools=[wiki_tool, search_tool, python_tool, html_parse_tool],
|
130 |
-
add_base_tools=True,
|
131 |
-
additional_authorized_imports=["dateparser", "bs4", "regex"])
|
132 |
-
|
133 |
-
def _serialize_messages(self, messages):
|
134 |
-
prompt = []
|
135 |
-
for m in messages:
|
136 |
-
r = m["role"]
|
137 |
-
role = r.value if isinstance(r, Enum) and hasattr(r, "value") else r # "system" / "user" / "assistant"
|
138 |
-
text = "".join([c['text'] for c in m['content']])
|
139 |
-
prompt.append(f"{role}: {text}")
|
140 |
-
return "\n".join(prompt)
|
141 |
-
|
142 |
-
def generate(self, question: str, stop_sequences=None, **kwargs) -> str:
|
143 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
# 2. Serialize the message and get the response
|
149 |
-
prompt_str = (
|
150 |
-
self._serialize_messages(question)
|
151 |
-
if isinstance(question, list)
|
152 |
-
else question
|
153 |
-
)
|
154 |
-
outputs = self.pipe(prompt_str, **gen_kwargs)
|
155 |
-
response = outputs[0]["generated_text"]
|
156 |
-
# response = self.agent.run(question)
|
157 |
-
|
158 |
-
# 3. Optionally map SmolAgents’ stop_sequences → HF pipeline’s 'stop'
|
159 |
-
if stop_sequences:
|
160 |
-
# find the earliest occurrence of any stop token
|
161 |
-
cuts = [response.find(s) for s in stop_sequences if response.find(s) != -1]
|
162 |
-
if cuts:
|
163 |
-
response = response[: min(cuts)]
|
164 |
-
|
165 |
-
print(f"Agent returning its generated answer: {response}")
|
166 |
-
|
167 |
-
# wrap back into a chat message dict
|
168 |
-
return ChatMessage(role="assistant", content=response)
|
169 |
-
# return {
|
170 |
-
# "role": 'assistant',
|
171 |
-
# "content": [{"type": "text", "text": response}],
|
172 |
-
# }
|
173 |
-
|
174 |
-
__call__ = generate
|
175 |
|
176 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
177 |
"""
|
@@ -180,7 +26,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
180 |
"""
|
181 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
182 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
183 |
-
hf_token = os.getenv("HF_TOKEN")
|
184 |
|
185 |
if profile:
|
186 |
username= f"{profile.username}"
|
@@ -195,7 +40,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
195 |
|
196 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
197 |
try:
|
198 |
-
agent = BasicAgent(
|
199 |
except Exception as e:
|
200 |
print(f"Error instantiating agent: {e}")
|
201 |
return f"Error initializing agent: {e}", None
|
@@ -224,8 +69,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
224 |
print(f"An unexpected error occurred fetching questions: {e}")
|
225 |
return f"An unexpected error occurred fetching questions: {e}", None
|
226 |
|
227 |
-
questions_data = questions_data[:5]
|
228 |
-
|
229 |
# 3. Run your Agent
|
230 |
results_log = []
|
231 |
answers_payload = []
|
|
|
1 |
+
import os
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import inspect
|
|
|
|
|
|
|
|
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# --- Basic Agent Definition ---
|
12 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
class BasicAgent:
|
14 |
+
def __init__(self):
|
15 |
print("BasicAgent initialized.")
|
16 |
+
def __call__(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
+
fixed_answer = "This is a default answer."
|
19 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
+
return fixed_answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
|
|
26 |
"""
|
27 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
28 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
|
|
29 |
|
30 |
if profile:
|
31 |
username= f"{profile.username}"
|
|
|
40 |
|
41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
+
agent = BasicAgent()
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
|
|
69 |
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
|
|
|
|
|
72 |
# 3. Run your Agent
|
73 |
results_log = []
|
74 |
answers_payload = []
|