|
import gradio as gr
|
|
from mysite.libs.utilities import completion, process_file, no_process_file
|
|
import mysite.interpreter.interpreter_config
|
|
import duckdb
|
|
import os
|
|
import sqlite3
|
|
from datetime import datetime
|
|
import base64
|
|
from PIL import Image
|
|
from io import BytesIO
|
|
from config.database import get_db_path
|
|
|
|
|
|
try:
|
|
from interpreter import interpreter
|
|
except ImportError:
|
|
print("Warning: open-interpreter not available. Some features may not work.")
|
|
interpreter = None
|
|
|
|
|
|
|
|
def validate_code(code_content):
|
|
"""Validate Python code syntax to prevent syntax errors"""
|
|
if not code_content or not code_content.strip():
|
|
return False
|
|
|
|
|
|
cleaned_code = '\n'.join(line for line in code_content.split('\n') if line.strip())
|
|
if not cleaned_code:
|
|
return False
|
|
|
|
try:
|
|
import ast
|
|
|
|
ast.parse(cleaned_code)
|
|
return True
|
|
except SyntaxError as e:
|
|
print(f"DEBUG: Syntax error in code: {e}")
|
|
return False
|
|
except Exception as e:
|
|
print(f"DEBUG: Error validating code: {e}")
|
|
return False
|
|
|
|
def format_response(chunk, full_response):
|
|
print(f"DEBUG: Processing chunk type: {chunk.get('type', 'unknown')}")
|
|
|
|
|
|
if chunk["type"] == "message":
|
|
content = chunk.get("content", "")
|
|
if content:
|
|
full_response += content
|
|
if chunk.get("end", False):
|
|
full_response += "\n"
|
|
|
|
|
|
if chunk["type"] == "code":
|
|
code_content = chunk.get("content", "").strip()
|
|
print(f"DEBUG: Code chunk content: '{code_content}'")
|
|
|
|
if chunk.get("start", False):
|
|
|
|
pass
|
|
|
|
|
|
if code_content and not code_content.isspace():
|
|
|
|
code_content = code_content.replace("`", "").strip()
|
|
|
|
|
|
if validate_code(code_content):
|
|
|
|
if "```python\n" not in full_response[-20:]:
|
|
full_response += "```python\n"
|
|
full_response += code_content
|
|
if not code_content.endswith('\n'):
|
|
full_response += '\n'
|
|
else:
|
|
print(f"DEBUG: Invalid code syntax detected, skipping: {code_content}")
|
|
|
|
|
|
if chunk.get("end", False):
|
|
|
|
if "```python\n" in full_response and not full_response.endswith("```\n"):
|
|
full_response += "```\n"
|
|
|
|
|
|
if chunk["type"] == "console":
|
|
console_content = chunk.get("content", "")
|
|
print(f"DEBUG: Console chunk content: '{console_content}'")
|
|
|
|
if not isinstance(console_content, str):
|
|
console_content = str(console_content)
|
|
|
|
|
|
if console_content.strip() and not console_content.isdigit() and console_content.strip().lower() != "none":
|
|
|
|
console_content = console_content.replace("`", "")
|
|
|
|
if chunk.get("start", False):
|
|
full_response += "```\n"
|
|
|
|
if chunk.get("format", "") == "active_line":
|
|
full_response += console_content.rstrip("\n") + "\n"
|
|
elif chunk.get("format", "") == "output":
|
|
full_response += console_content.rstrip("\n") + "\n"
|
|
|
|
if chunk.get("end", False):
|
|
full_response += "```\n"
|
|
|
|
|
|
if chunk["type"] == "confirmation":
|
|
code_content = chunk.get("content", {})
|
|
if isinstance(code_content, dict):
|
|
code = code_content.get("code", "").strip()
|
|
if code and validate_code(code):
|
|
if chunk.get("start", False):
|
|
full_response += "```python\n"
|
|
full_response += code
|
|
if not code.endswith('\n'):
|
|
full_response += '\n'
|
|
if chunk.get("end", False):
|
|
full_response += "```\n"
|
|
|
|
|
|
if chunk["type"] == "image":
|
|
if chunk.get("start", False) or chunk.get("end", False):
|
|
full_response += "\n"
|
|
else:
|
|
image_format = chunk.get("format", "")
|
|
if image_format == "base64.png":
|
|
image_content = chunk.get("content", "")
|
|
if image_content:
|
|
try:
|
|
image = Image.open(BytesIO(base64.b64decode(image_content)))
|
|
new_image = Image.new("RGB", image.size, "white")
|
|
new_image.paste(image, mask=image.split()[3])
|
|
buffered = BytesIO()
|
|
new_image.save(buffered, format="PNG")
|
|
img_str = base64.b64encode(buffered.getvalue()).decode()
|
|
full_response += f"\n"
|
|
except Exception as e:
|
|
print(f"DEBUG: Error processing image: {e}")
|
|
|
|
return full_response
|
|
|
|
|
|
db_name = get_db_path("chat_history.db")
|
|
|
|
def initialize_db():
|
|
|
|
os.makedirs(os.path.dirname(db_name), exist_ok=True)
|
|
conn = sqlite3.connect(db_name)
|
|
cursor = conn.cursor()
|
|
cursor.execute("""
|
|
CREATE TABLE IF NOT EXISTS history (
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
role TEXT,
|
|
type TEXT,
|
|
content TEXT,
|
|
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
|
|
)
|
|
""")
|
|
conn.commit()
|
|
conn.close()
|
|
|
|
def add_message_to_db(role, message_type, content):
|
|
conn = sqlite3.connect(db_name)
|
|
cursor = conn.cursor()
|
|
cursor.execute("INSERT INTO history (role, type, content) VALUES (?, ?, ?)", (role, message_type, content))
|
|
conn.commit()
|
|
conn.close()
|
|
|
|
def get_recent_messages(limit=4):
|
|
conn = sqlite3.connect(db_name)
|
|
cursor = conn.cursor()
|
|
cursor.execute("SELECT role, type, content FROM history ORDER BY timestamp DESC LIMIT ?", (limit,))
|
|
messages = cursor.fetchall()
|
|
conn.close()
|
|
return messages[::-1]
|
|
|
|
def format_responses(chunk, full_response):
|
|
|
|
return full_response + chunk.get("content", "")
|
|
|
|
def chat_with_interpreter(message, history=None,passw=None, temperature=None, max_new_tokens=None):
|
|
import os
|
|
|
|
|
|
print(f"DEBUG: Received message: '{message}'")
|
|
print(f"DEBUG: Password: '{passw}'")
|
|
|
|
|
|
if interpreter is None:
|
|
error_msg = "Error: open-interpreter is not available. Please install it with: pip install open-interpreter"
|
|
print(f"DEBUG: {error_msg}")
|
|
yield error_msg
|
|
return
|
|
|
|
|
|
from dotenv import load_dotenv
|
|
load_dotenv()
|
|
|
|
|
|
api_key = os.getenv("GROQ_API_KEY") or os.getenv("api_key")
|
|
if not api_key:
|
|
error_msg = "Error: No Groq API key found. Please set GROQ_API_KEY or api_key environment variable."
|
|
print(f"DEBUG: {error_msg}")
|
|
yield error_msg
|
|
return
|
|
|
|
print(f"DEBUG: API key found: {api_key[:10]}...")
|
|
|
|
|
|
try:
|
|
interpreter.llm.api_key = api_key
|
|
interpreter.llm.api_base = "https://api.groq.com/openai/v1"
|
|
interpreter.llm.model = "llama3-8b-8192"
|
|
|
|
|
|
interpreter.auto_run = False
|
|
interpreter.force_task_completion = False
|
|
interpreter.safe_mode = "ask"
|
|
|
|
print("DEBUG: Interpreter configured successfully")
|
|
except Exception as e:
|
|
error_msg = f"Error configuring interpreter: {e}"
|
|
print(f"DEBUG: {error_msg}")
|
|
yield error_msg
|
|
return
|
|
|
|
|
|
required_password = os.getenv("OPENINTERPRETER_PASSWORD", "12345")
|
|
if passw != required_password:
|
|
error_msg = "パスワードが正しくありません。正しいパスワードを入力してください。"
|
|
print(f"DEBUG: {error_msg}")
|
|
yield error_msg
|
|
return
|
|
|
|
print("DEBUG: Password check passed")
|
|
|
|
if message == "reset":
|
|
interpreter.reset()
|
|
yield "Interpreter reset"
|
|
return
|
|
|
|
print(f"DEBUG: Processing message: '{message}'")
|
|
|
|
full_response = ""
|
|
recent_messages = get_recent_messages(limit=4)
|
|
|
|
|
|
add_message_to_db("user", "message", message)
|
|
|
|
|
|
try:
|
|
|
|
interpreter.messages = []
|
|
|
|
print(f"DEBUG: Adding {len(recent_messages)} recent messages to history")
|
|
|
|
|
|
for role, message_type, content in recent_messages:
|
|
if role == "user":
|
|
interpreter.messages.append({"role": "user", "type": "message", "content": content})
|
|
elif role == "assistant":
|
|
interpreter.messages.append({"role": "assistant", "type": "message", "content": content})
|
|
|
|
print(f"DEBUG: Starting interpreter.chat() with message: '{message}'")
|
|
|
|
|
|
chunk_count = 0
|
|
for chunk in interpreter.chat(message, display=False, stream=True):
|
|
chunk_count += 1
|
|
print(f"DEBUG: Processing chunk {chunk_count}: {type(chunk)} - {chunk}")
|
|
|
|
if isinstance(chunk, dict):
|
|
old_response = full_response
|
|
full_response = format_response(chunk, full_response)
|
|
|
|
|
|
if full_response != old_response:
|
|
print(f"DEBUG: Response updated from '{old_response[-50:]}' to '{full_response[-50:]}'")
|
|
yield full_response
|
|
else:
|
|
|
|
print(f"DEBUG: Non-dict chunk: {chunk}")
|
|
if hasattr(chunk, 'content'):
|
|
content = str(chunk.content)
|
|
if content.strip():
|
|
full_response += content
|
|
yield full_response
|
|
else:
|
|
content = str(chunk)
|
|
if content.strip():
|
|
full_response += content
|
|
yield full_response
|
|
|
|
print(f"DEBUG: Chat processing completed. Total chunks: {chunk_count}")
|
|
print(f"DEBUG: Final response length: {len(full_response)}")
|
|
|
|
|
|
if full_response.strip():
|
|
add_message_to_db("assistant", "message", full_response)
|
|
print("DEBUG: Response saved to database")
|
|
else:
|
|
print("DEBUG: No response to save (empty)")
|
|
|
|
except Exception as e:
|
|
error_msg = f"Error during chat processing: {e}"
|
|
print(f"DEBUG: Exception occurred: {error_msg}")
|
|
yield error_msg
|
|
add_message_to_db("assistant", "error", error_msg)
|
|
|
|
yield full_response
|
|
|
|
|
|
def chat_with_interpreter_no_stream(message, history=None, a=None, b=None, c=None, d=None):
|
|
if message == "reset":
|
|
interpreter.reset()
|
|
return "Interpreter reset", history
|
|
|
|
full_response = ""
|
|
recent_messages = get_recent_messages()
|
|
|
|
for role, message_type, content in recent_messages:
|
|
entry = {"role": role, "type": message_type, "content": content}
|
|
interpreter.messages.append(entry)
|
|
|
|
user_entry = {"role": "user", "type": "message", "content": message}
|
|
interpreter.messages.append(user_entry)
|
|
add_message_to_db("user", "message", message)
|
|
|
|
chunks = interpreter.chat(message, display=False, stream=False)
|
|
for chunk in chunks:
|
|
if isinstance(chunk, dict):
|
|
full_response = format_response(chunk, full_response)
|
|
else:
|
|
raise TypeError("Expected chunk to be a dictionary")
|
|
|
|
assistant_entry = {"role": "assistant", "type": "message", "content": str(full_response)}
|
|
interpreter.messages.append(assistant_entry)
|
|
add_message_to_db("assistant", "message", str(full_response))
|
|
|
|
|
|
return str(full_response), history
|
|
|
|
|
|
|
|
initialize_db()
|
|
|
|
|
|
PLACEHOLDER = """
|
|
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
|
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
|
|
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
|
|
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
|
|
</div>
|
|
"""
|
|
|
|
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface")
|
|
|
|
|
|
|
|
gradio_interface = gr.ChatInterface(
|
|
fn=chat_with_interpreter,
|
|
chatbot=chatbot,
|
|
fill_height=True,
|
|
additional_inputs_accordion=gr.Accordion(
|
|
label="⚙️ Parameters", open=False, render=False
|
|
),
|
|
additional_inputs=[
|
|
gr.Textbox(
|
|
type="password",
|
|
label="パスワード",
|
|
render=True
|
|
),
|
|
gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.1,
|
|
value=0.95,
|
|
label="Temperature",
|
|
render=False,
|
|
),
|
|
gr.Slider(
|
|
minimum=128,
|
|
maximum=4096,
|
|
step=1,
|
|
value=512,
|
|
label="Max new tokens",
|
|
render=False,
|
|
),
|
|
|
|
],
|
|
|
|
examples=[
|
|
["HTMLのサンプルを作成して"],
|
|
[
|
|
"CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml"
|
|
],
|
|
],
|
|
cache_examples=False,
|
|
)
|
|
|
|
|
|
interface_title = "🤖 Open Interpreter"
|
|
interface_description = "コード実行・解釈AIシステム"
|
|
|
|
if __name__ == '__main__':
|
|
message = f"""
|
|
postgres connection is this postgresql://miyataken999:yz1wPf4KrWTm@ep-odd-mode-93794521.us-east-2.aws.neon.tech/neondb?sslmode=require
|
|
create this tabale
|
|
CREATE TABLE items (
|
|
id INT PRIMARY KEY,
|
|
brand_name VARCHAR(255),
|
|
model_name VARCHAR(255),
|
|
product_number VARCHAR(255),
|
|
purchase_store VARCHAR(255),
|
|
purchase_date DATE,
|
|
purchase_price INT,
|
|
accessories TEXT,
|
|
condition INT,
|
|
metal_type VARCHAR(255),
|
|
metal_weight DECIMAL(10, 2),
|
|
diamond_certification BLOB,
|
|
initial BOOLEAN
|
|
);
|
|
|
|
"""
|
|
chat_with_interpreter(message)
|
|
|