""" Process CodeReview Bench leaderboard data and submissions. """ import json import os import pandas as pd from datetime import datetime from typing import Dict, List, Tuple, Optional import numpy as np from src.display.utils import ( CODEREVIEW_COLUMN, DISPLAY_COLS, CATEGORIES, COMMENT_LANGUAGES, EXAMPLE_CATEGORIES, MULTIMETRIC_METRICS, EXACT_MATCH_METRICS ) def process_jsonl_submission(file_path: str) -> Tuple[List[Dict], str]: """ Process a JSONL submission file for CodeReview Bench. Args: file_path: Path to the JSONL submission file Returns: Tuple of (entries_list, message) """ try: entries = [] with open(file_path, 'r', encoding='utf-8') as f: for line_num, line in enumerate(f, 1): line = line.strip() if not line: continue try: entry = json.loads(line) # Validate required fields required_fields = ['model_name', 'programming_language', 'comment_language'] missing_fields = [field for field in required_fields if field not in entry] if missing_fields: return [], f"Missing required fields {missing_fields} in line {line_num}" # Validate metrics exist has_multimetric = any(metric in entry for metric in MULTIMETRIC_METRICS) has_exact_match = any(metric in entry for metric in EXACT_MATCH_METRICS) if not has_multimetric and not has_exact_match: return [], f"No valid metrics found in line {line_num}. Required: {MULTIMETRIC_METRICS + EXACT_MATCH_METRICS}" entries.append(entry) except json.JSONDecodeError as e: return [], f"Invalid JSON in line {line_num}: {e}" if not entries: return [], "No valid entries found in submission file" return entries, f"Successfully processed {len(entries)} entries" except Exception as e: return [], f"Error processing submission: {e}" def calculate_overall_score(entry: Dict) -> float: """ Calculate overall score for a CodeReview Bench entry. Args: entry: Dictionary containing model evaluation results Returns: Overall score as float """ # Calculate multimetric average multimetric_scores = [] for metric in MULTIMETRIC_METRICS: if metric in entry and isinstance(entry[metric], (int, float)): multimetric_scores.append(entry[metric]) multimetric_avg = np.mean(multimetric_scores) if multimetric_scores else 0 # Calculate exact match average exact_match_scores = [] for metric in EXACT_MATCH_METRICS: if metric in entry and isinstance(entry[metric], (int, float)): exact_match_scores.append(entry[metric]) exact_match_avg = np.mean(exact_match_scores) if exact_match_scores else 0 # Weighted combination (can be adjusted based on requirements) overall_score = (multimetric_avg * 0.7) + (exact_match_avg * 0.3) return overall_score def load_leaderboard_data(file_path: str) -> Dict: """ Load the leaderboard data from a JSON file. """ if not os.path.exists(file_path): version = "v0" if "_v" in file_path: version = file_path.split("_")[-1].split(".")[0] return {"entries": [], "last_updated": datetime.now().isoformat(), "version": version} with open(file_path, 'r') as f: data = json.load(f) # Ensure version field exists if "version" not in data: version = "v0" if "_v" in file_path: version = file_path.split("_")[-1].split(".")[0] data["version"] = version return data def save_leaderboard_data(data: Dict, file_path: str) -> None: """ Save the leaderboard data to a JSON file. """ # Ensure the directory exists os.makedirs(os.path.dirname(file_path), exist_ok=True) # Update the last_updated timestamp data["last_updated"] = datetime.now().isoformat() # Ensure version is set if "version" not in data: version = "v0" if "_v" in file_path: version = file_path.split("_")[-1].split(".")[0] data["version"] = version with open(file_path, 'w') as f: json.dump(data, f, indent=2) def leaderboard_to_dataframe(leaderboard_data: Dict) -> pd.DataFrame: """ Convert leaderboard data to a pandas DataFrame for display. """ rows = [] for entry in leaderboard_data.get("entries", []): model_name = entry.get("model_name", "Unknown Model") # Extract basic metadata row = { "model_name": model_name, "model_type": entry.get("model_type", "Unknown"), "mode": entry.get("mode", "Strict"), "submission_date": entry.get("submission_date", ""), "version": entry.get("version", "v0"), "review_model_type": entry.get("review_model_type", "custom").lower() } # Add additional metadata fields if present for key in ["base_model", "revision", "precision", "weight_type", "topic", "programming_language", "comment_language"]: if key in entry: row[key] = entry[key] # Add multimetric scores for metric in MULTIMETRIC_METRICS: if metric in entry: row[metric] = entry[metric] else: row[metric] = pd.NA # Add exact match metrics for metric in EXACT_MATCH_METRICS: if metric in entry: row[metric] = entry[metric] else: row[metric] = pd.NA # Calculate aggregated metrics multimetric_scores = [entry.get(metric, 0) for metric in MULTIMETRIC_METRICS if metric in entry and pd.notna(entry[metric])] exact_match_scores = [entry.get(metric, 0) for metric in EXACT_MATCH_METRICS if metric in entry and pd.notna(entry[metric])] if multimetric_scores: row["multimetric_average"] = np.mean(multimetric_scores) else: row["multimetric_average"] = pd.NA if exact_match_scores: row["exact_match_average"] = np.mean(exact_match_scores) else: row["exact_match_average"] = pd.NA # Calculate overall score row["overall_score"] = calculate_overall_score(entry) # Add language-specific metrics if available for lang in COMMENT_LANGUAGES: for metric in ["readability", "relevance", "overall_score"]: lang_key = f"{lang}_{metric}" if lang_key in entry: row[lang_key] = entry[lang_key] else: row[lang_key] = pd.NA # Add evaluation count row["total_evaluations"] = entry.get("total_evaluations", entry.get("evaluation_count", pd.NA)) rows.append(row) # Create DataFrame and sort by overall score df = pd.DataFrame(rows) # Ensure all expected columns exist for metric in MULTIMETRIC_METRICS + EXACT_MATCH_METRICS: if metric not in df.columns: df[metric] = pd.NA # Sort by overall score (descending) if not df.empty: df = df.sort_values(by="overall_score", ascending=False, na_position='last') # Ensure summary columns exist summary_cols = ["overall_score", "multimetric_average", "exact_match_average", "total_evaluations"] for col in summary_cols: if col not in df.columns: df[col] = pd.NA return df def add_entries_to_leaderboard(leaderboard_data: Dict, new_entries: List[Dict]) -> Dict: """ Add new entries to the leaderboard, replacing any with the same model name. """ # Create a mapping of existing entries by model name and version existing_entries = { (entry["model_name"], entry.get("version", "v0")): i for i, entry in enumerate(leaderboard_data.get("entries", [])) } # Process each new entry for new_entry in new_entries: model_name = new_entry.get("model_name") version = new_entry.get("version", "v0") # Add calculated metrics new_entry["overall_score"] = calculate_overall_score(new_entry) # Calculate averages multimetric_scores = [new_entry.get(metric) for metric in MULTIMETRIC_METRICS if metric in new_entry and pd.notna(new_entry[metric])] exact_match_scores = [new_entry.get(metric) for metric in EXACT_MATCH_METRICS if metric in new_entry and pd.notna(new_entry[metric])] if multimetric_scores: new_entry["multimetric_average"] = np.mean(multimetric_scores) if exact_match_scores: new_entry["exact_match_average"] = np.mean(exact_match_scores) if (model_name, version) in existing_entries: # Replace existing entry leaderboard_data["entries"][existing_entries[(model_name, version)]] = new_entry else: # Add new entry if "entries" not in leaderboard_data: leaderboard_data["entries"] = [] leaderboard_data["entries"].append(new_entry) # Update the last_updated timestamp leaderboard_data["last_updated"] = datetime.now().isoformat() return leaderboard_data