CodeReviewBench / src /populate.py
kenkaneki's picture
zalupa5
bf8f34b
"""
Populate the CodeReview Bench leaderboard from HuggingFace datasets.
"""
import json
import os
import pandas as pd
import tempfile
from typing import Dict, List, Optional
from datetime import datetime
import numpy as np
from huggingface_hub import hf_hub_download, HfApi
from datasets import load_dataset
from src.display.utils import CODEREVIEW_COLUMN, DISPLAY_COLS, CATEGORIES
from src.envs import RESULTS_DATASET_ID, TOKEN, CACHE_PATH
from src.leaderboard.processor import leaderboard_to_dataframe
def get_latest_leaderboard(version="v0") -> Optional[Dict]:
"""
Get the latest leaderboard data from HuggingFace dataset.
Fallback to local JSON file if HF download fails or is unavailable.
"""
# First try to fetch from HuggingFace Hub
try:
leaderboard_path = hf_hub_download(
repo_id=RESULTS_DATASET_ID,
filename=f"leaderboards/leaderboard_{version}.json",
repo_type="dataset",
token=TOKEN
)
with open(leaderboard_path, 'r') as f:
return json.load(f)
except Exception as hf_err:
print(f"HF download failed or unavailable: {hf_err}. Trying local fallback...")
# Fallback: attempt to load a local leaderboard_data.json located at the project root
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
local_path_candidates = [
os.path.join(project_root, "leaderboard_data.json"), # legacy path in root
os.path.join(project_root, "data", "leaderboard.json"), # path defined in envs.py
]
for local_path in local_path_candidates:
if os.path.exists(local_path):
try:
with open(local_path, 'r') as f:
return json.load(f)
except Exception as local_err:
print(f"Error loading local leaderboard file {local_path}: {local_err}")
# If nothing found, return None
return None
def get_model_entry(model_name: str, mode: str, version="v0") -> Optional[Dict]:
"""
Get a specific model's entry from the entries folder, uniquely identified by model_name, mode, and version.
"""
try:
model_name_safe = model_name.replace("/", "_").replace(" ", "_")
mode_safe = str(mode).replace("/", "_").replace(" ", "_").lower()
entry_path = hf_hub_download(
repo_id=RESULTS_DATASET_ID,
filename=f"entries/entry_{model_name_safe}_{mode_safe}_{version}.json",
repo_type="dataset",
token=TOKEN
)
with open(entry_path, 'r') as f:
return json.load(f)
except Exception as e:
print(f"Error downloading model entry: {e}")
return None
def get_all_entries(version="v0") -> List[Dict]:
"""
Get all entries from the HuggingFace dataset.
"""
try:
api = HfApi(token=TOKEN)
files = api.list_repo_files(repo_id=RESULTS_DATASET_ID, repo_type="dataset")
entry_files = [f for f in files if f.startswith("entries/") and f.endswith(f"_{version}.json")]
all_entries = []
for entry_file in entry_files:
try:
entry_path = hf_hub_download(
repo_id=RESULTS_DATASET_ID,
filename=entry_file,
repo_type="dataset",
token=TOKEN
)
with open(entry_path, 'r') as f:
entry_data = json.load(f)
all_entries.append(entry_data)
except Exception as e:
print(f"Error loading entry {entry_file}: {e}")
return all_entries
except Exception as e:
print(f"Error getting all entries: {e}")
return []
def get_leaderboard_df(version="v0") -> pd.DataFrame:
"""
Get the leaderboard data as a DataFrame.
"""
# Get latest leaderboard data
leaderboard_data = get_latest_leaderboard(version)
if not leaderboard_data:
# If no leaderboard exists, try to build it from entries
entries = get_all_entries(version)
if entries:
leaderboard_data = {
"entries": entries,
"last_updated": datetime.now().isoformat(),
"version": version
}
else:
# Return empty DataFrame if no data available
return pd.DataFrame(columns=DISPLAY_COLS)
# Convert to DataFrame
return leaderboard_to_dataframe(leaderboard_data)
def get_category_leaderboard_df(category: str, version="v0") -> pd.DataFrame:
"""
Get the leaderboard data filtered by a specific programming language category.
"""
# Get latest leaderboard data
leaderboard_data = get_latest_leaderboard(version)
if not leaderboard_data:
# If no leaderboard exists, try to build it from entries
entries = get_all_entries(version)
if entries:
leaderboard_data = {
"entries": entries,
"last_updated": datetime.now().isoformat(),
"version": version
}
else:
# Return empty DataFrame if no data available
return pd.DataFrame(columns=DISPLAY_COLS)
# Filter entries to only include those with data for the specified programming language
filtered_entries = []
for entry in leaderboard_data.get("entries", []):
# Check if entry has data for this programming language
programming_language = entry.get("programming_language", "").lower()
if programming_language == category.lower() or category.lower() == "other":
# For "other" category, include entries that don't match any specific language
if category.lower() == "other":
if programming_language not in [cat.lower() for cat in CATEGORIES[:-1]]: # Exclude "Other" from check
filtered_entries.append(entry)
else:
filtered_entries.append(entry)
# Create a new leaderboard data structure with the filtered entries
filtered_leaderboard = {
"entries": filtered_entries,
"last_updated": leaderboard_data.get("last_updated", datetime.now().isoformat()),
"version": version
}
# Convert to DataFrame
return leaderboard_to_dataframe(filtered_leaderboard)
def get_detailed_model_data(model_name: str, mode: str, version="v0") -> Dict:
"""
Get detailed data for a specific model and mode.
"""
entry = get_model_entry(model_name, mode, version)
if entry:
return entry
leaderboard_data = get_latest_leaderboard(version)
if leaderboard_data:
for entry in leaderboard_data.get("entries", []):
if entry.get("model_name") == model_name and str(entry.get("mode")).lower() == str(mode).lower():
return entry
return {}