Spaces:
Running
Running
""" | |
CodeReview Leaderboard - Inspired by CodeReviewBench | |
A comprehensive leaderboard for code review generation models | |
""" | |
import os | |
import json | |
import tempfile | |
import logging | |
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from apscheduler.schedulers.background import BackgroundScheduler | |
import numpy as np | |
from gradio.themes.utils import fonts, colors | |
from dataclasses import fields, dataclass | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
CODEREVIEW_COLUMN, | |
DISPLAY_COLS, | |
METRIC_COLS, | |
HIDDEN_COLS, | |
NEVER_HIDDEN_COLS, | |
CATEGORIES, | |
COMMENT_LANGUAGES, | |
EXAMPLE_CATEGORIES, | |
TOPICS, | |
ModelType, | |
Mode, | |
Precision, | |
WeightType, | |
ReviewModelType, | |
get_all_column_choices, | |
get_default_visible_columns, | |
) | |
from src.display.formatting import styled_message, styled_error, styled_warning | |
from src.envs import ( | |
ADMIN_USERNAME, | |
ADMIN_PASSWORD, | |
RESULTS_DATASET_ID, | |
SUBMITTER_TOKEN, | |
TOKEN, | |
DATA_PATH, | |
) | |
from src.populate import get_leaderboard_df, get_category_leaderboard_df | |
from src.submission.submit import process_submission | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
# Ensure data directory exists | |
os.makedirs(DATA_PATH, exist_ok=True) | |
# Available benchmark versions | |
BENCHMARK_VERSIONS = ["v0"] | |
CURRENT_VERSION = "v0" | |
# Initialize leaderboard data | |
try: | |
logger.info("Initializing leaderboard data...") | |
LEADERBOARD_DF = get_leaderboard_df(version=CURRENT_VERSION) | |
logger.info(f"Loaded leaderboard with {len(LEADERBOARD_DF)} entries") | |
except Exception as e: | |
logger.error(f"Error loading leaderboard data: {e}") | |
LEADERBOARD_DF = pd.DataFrame() | |
custom_theme = gr.themes.Default( | |
primary_hue=colors.slate, | |
secondary_hue=colors.slate, | |
neutral_hue=colors.neutral, | |
font=(fonts.GoogleFont("Inter"), "sans-serif"), | |
).set( | |
# font_size="16px", | |
body_background_fill="#0f0f10", | |
body_background_fill_dark="#0f0f10", | |
body_text_color="#f4f4f5", | |
body_text_color_subdued="#a1a1aa", | |
block_background_fill="#1e1e1e", # Cooler Grey | |
block_border_color="#333333", # Cooler Grey | |
block_shadow="none", | |
# Swapped primary and secondary button styles | |
button_primary_background_fill="#121212", # Changed to specific color for Refresh button | |
button_primary_text_color="#f4f4f5", | |
button_primary_border_color="#333333", # Keep border grey or change to #121212? | |
button_secondary_background_fill="#f4f4f5", | |
button_secondary_text_color="#0f0f10", | |
button_secondary_border_color="#f4f4f5", | |
input_background_fill="#1e1e1e", # Cooler Grey | |
input_border_color="#333333", # Cooler Grey | |
input_placeholder_color="#71717a", | |
table_border_color="#333333", # Cooler Grey | |
table_even_background_fill="#2d2d2d", # Cooler Grey (Slightly lighter) | |
table_odd_background_fill="#1e1e1e", # Cooler Grey | |
table_text_color="#f4f4f5", | |
link_text_color="#ffffff", | |
border_color_primary="#333333", # Cooler Grey | |
background_fill_secondary="#333333", # Cooler Grey | |
color_accent="#f4f4f5", | |
border_color_accent="#333333", # Cooler Grey | |
button_primary_background_fill_hover="#424242", # Cooler Grey | |
block_title_text_color="#f4f4f5", | |
accordion_text_color="#f4f4f5", | |
panel_background_fill="#1e1e1e", # Cooler Grey | |
panel_border_color="#333333", # Cooler Grey | |
# Explicitly setting primary/secondary/accent colors/borders | |
background_fill_primary="#0f0f10", | |
background_fill_primary_dark="#0f0f10", | |
background_fill_secondary_dark="#333333", # Cooler Grey | |
border_color_primary_dark="#333333", # Cooler Grey | |
border_color_accent_dark="#333333", # Cooler Grey | |
border_color_accent_subdued="#424242", # Cooler Grey | |
border_color_accent_subdued_dark="#424242", # Cooler Grey | |
color_accent_soft="#a1a1aa", | |
color_accent_soft_dark="#a1a1aa", | |
# Explicitly setting input hover/focus states | |
input_background_fill_dark="#1e1e1e", # Cooler Grey | |
input_background_fill_focus="#424242", # Cooler Grey | |
input_background_fill_focus_dark="#424242", # Cooler Grey | |
input_background_fill_hover="#2d2d2d", # Cooler Grey | |
input_background_fill_hover_dark="#2d2d2d", # Cooler Grey | |
input_border_color_dark="#333333", # Cooler Grey | |
input_border_color_focus="#f4f4f5", | |
input_border_color_focus_dark="#f4f4f5", | |
input_border_color_hover="#424242", # Cooler Grey | |
input_border_color_hover_dark="#424242", # Cooler Grey | |
input_placeholder_color_dark="#71717a", | |
# Explicitly set dark variants for table backgrounds | |
table_even_background_fill_dark="#2d2d2d", # Cooler Grey | |
table_odd_background_fill_dark="#1e1e1e", # Cooler Grey | |
# Explicitly set dark text variants | |
body_text_color_dark="#f4f4f5", | |
body_text_color_subdued_dark="#a1a1aa", | |
block_title_text_color_dark="#f4f4f5", | |
accordion_text_color_dark="#f4f4f5", | |
table_text_color_dark="#f4f4f5", | |
# Explicitly set dark panel/block variants | |
panel_background_fill_dark="#1e1e1e", # Cooler Grey | |
panel_border_color_dark="#333333", # Cooler Grey | |
block_background_fill_dark="#1e1e1e", # Cooler Grey | |
block_border_color_dark="#333333", # Cooler Grey | |
) | |
class ColumnInfo: | |
"""Information about a column in the leaderboard.""" | |
name: str | |
display_name: str | |
type: str = "text" | |
hidden: bool = False | |
never_hidden: bool = False | |
displayed_by_default: bool = True | |
def update_column_choices(df): | |
"""Update column choices based on what's actually in the dataframe""" | |
if df is None or df.empty: | |
return get_all_column_choices() | |
# Get columns that actually exist in the dataframe | |
existing_columns = list(df.columns) | |
# Get all possible columns with their display names | |
all_columns = get_all_column_choices() | |
# Filter to only include columns that exist in the dataframe | |
valid_columns = [ | |
(col_name, display_name) | |
for col_name, display_name in all_columns | |
if col_name in existing_columns | |
] | |
# Return default if there are no valid columns | |
if not valid_columns: | |
return get_all_column_choices() | |
return valid_columns | |
# Update the column_selector initialization | |
def get_initial_columns(): | |
"""Get initial columns to show in the dropdown""" | |
try: | |
# Get available columns in the main dataframe | |
available_cols = list(LEADERBOARD_DF.columns) | |
logger.info(f"Available columns in LEADERBOARD_DF: {available_cols}") | |
# If dataframe is empty, use default visible columns | |
if not available_cols: | |
return get_default_visible_columns() | |
# Get default visible columns that actually exist in the dataframe | |
valid_defaults = [ | |
col for col in get_default_visible_columns() if col in available_cols | |
] | |
# If none of the defaults exist, return all available columns | |
if not valid_defaults: | |
return available_cols | |
return valid_defaults | |
except Exception as e: | |
logger.error(f"Error getting initial columns: {e}") | |
return get_default_visible_columns() | |
def init_leaderboard(dataframe, visible_columns=None): | |
""" | |
Initialize a standard Gradio Dataframe component for the leaderboard. | |
""" | |
if dataframe is None or dataframe.empty: | |
# Create an empty dataframe with the right columns | |
columns = [getattr(CODEREVIEW_COLUMN, col).name for col in DISPLAY_COLS] | |
dataframe = pd.DataFrame(columns=columns) | |
logger.warning("Initializing empty leaderboard") | |
# Lowercase model_name for display | |
if "model_name" in dataframe.columns: | |
dataframe = dataframe.copy() | |
dataframe["model_name"] = dataframe["model_name"].str.lower() | |
if "model_type" in dataframe.columns: | |
dataframe = dataframe.copy() | |
dataframe["model_type"] = dataframe["model_type"].str.replace(" : ", "-") | |
if "review_model_type" in dataframe.columns: | |
dataframe = dataframe.copy() | |
dataframe["review_model_type"] = dataframe["review_model_type"].str.replace("custom", "custom") | |
# print("\n\n", "dataframe", dataframe, "--------------------------------\n\n") | |
# Determine which columns to display | |
display_column_names = [ | |
getattr(CODEREVIEW_COLUMN, col).name for col in DISPLAY_COLS | |
] | |
hidden_column_names = [getattr(CODEREVIEW_COLUMN, col).name for col in HIDDEN_COLS] | |
# Columns that should always be shown | |
always_visible = [getattr(CODEREVIEW_COLUMN, col).name for col in NEVER_HIDDEN_COLS] | |
# Use provided visible columns if specified, otherwise use default | |
if visible_columns is None: | |
# Determine which columns to show initially | |
visible_columns = [ | |
col for col in display_column_names if col not in hidden_column_names | |
] | |
# Always include the never-hidden columns | |
for col in always_visible: | |
if col not in visible_columns and col in dataframe.columns: | |
visible_columns.append(col) | |
# Make sure we only include columns that actually exist in the dataframe | |
visible_columns = [col for col in visible_columns if col in dataframe.columns] | |
# Map GuardBench column types to Gradio's expected datatype strings | |
# Valid Gradio datatypes are: 'str', 'number', 'bool', 'date', 'markdown', 'html', 'image' | |
type_mapping = { | |
"text": "str", | |
"number": "number", | |
"bool": "bool", | |
"date": "date", | |
"markdown": "markdown", | |
"html": "html", | |
"image": "image", | |
} | |
# Create a list of datatypes in the format Gradio expects | |
datatypes = [] | |
for col in visible_columns: | |
# Find the corresponding CODEREVIEW_COLUMN entry | |
col_type = None | |
for display_col in DISPLAY_COLS: | |
if getattr(CODEREVIEW_COLUMN, display_col).name == col: | |
orig_type = getattr(CODEREVIEW_COLUMN, display_col).type | |
# Map to Gradio's expected types | |
col_type = type_mapping.get(orig_type, "str") | |
break | |
# Default to 'str' if type not found or not mappable | |
if col_type is None: | |
col_type = "str" | |
datatypes.append(col_type) | |
# Create a dummy column for search functionality if it doesn't exist | |
if "search_dummy" not in dataframe.columns: | |
dataframe["search_dummy"] = dataframe.apply( | |
lambda row: " ".join(str(val) for val in row.values if pd.notna(val)), | |
axis=1, | |
) | |
# Select only the visible columns for display | |
visible_columns.remove("model_name") | |
visible_columns = ["model_name"] + visible_columns | |
display_df = dataframe[visible_columns].copy() | |
# print(f"--- DataFrame inside init_leaderboard (before rounding) ---") | |
# print(display_df[['model_name', 'macro_accuracy', 'macro_recall', 'total_evals_count']].head() if all(c in display_df.columns for c in ['model_name', 'macro_accuracy', 'macro_recall', 'total_evals_count']) else "Relevant columns not present") | |
# print(f"-------------------------------------------------------------") | |
# Round numeric columns to 3 decimal places for display | |
numeric_cols = display_df.select_dtypes(include=np.number).columns | |
for col in numeric_cols: | |
# Avoid rounding integer columns like counts | |
if not pd.api.types.is_integer_dtype(display_df[col]): | |
# Format floats to exactly 3 decimal places, preserving trailing zeros | |
display_df[col] = display_df[col].apply( | |
lambda x: f"{x:.3f}" if pd.notna(x) else None | |
) | |
column_info_map = { | |
f.name: getattr(CODEREVIEW_COLUMN, f.name) for f in fields(CODEREVIEW_COLUMN) | |
} | |
column_mapping = { | |
col: column_info_map.get(col, ColumnInfo(col, col)).display_name | |
for col in visible_columns | |
} | |
# Rename columns in the DataFrame | |
display_df.rename(columns=column_mapping, inplace=True) | |
# Apply styling - note: styling might need adjustment if it relies on column names | |
styler = display_df.style.set_properties(**{"text-align": "right"}).set_properties( | |
subset=["Model"], **{"width": "200px"} | |
) | |
return gr.Dataframe( | |
value=styler, | |
datatype=datatypes, | |
interactive=False, | |
wrap=True, | |
height=2500, | |
elem_id="leaderboard-table", | |
row_count=len(display_df), | |
) | |
def search_filter_leaderboard( | |
df, search_query="", comment_languages=None, version=CURRENT_VERSION | |
): | |
""" | |
Filter the leaderboard based on search query and comment languages. | |
""" | |
if df is None or df.empty: | |
return df | |
filtered_df = df.copy() | |
# Add search dummy column if it doesn't exist | |
if "search_dummy" not in filtered_df.columns: | |
filtered_df["search_dummy"] = filtered_df.apply( | |
lambda row: " ".join(str(val) for val in row.values if pd.notna(val)), | |
axis=1, | |
) | |
# Apply comment language filter (assuming there's a comment_language column in the data) | |
if comment_languages and len(comment_languages) > 0: | |
# Look for a comment language column in the dataframe | |
comment_lang_cols = [col for col in filtered_df.columns if 'comment_language' in col.lower()] | |
if comment_lang_cols: | |
filtered_df = filtered_df[ | |
filtered_df[comment_lang_cols[0]].isin(comment_languages) | |
] | |
# Apply search query | |
if search_query: | |
search_terms = [ | |
term.strip() for term in search_query.split(";") if term.strip() | |
] | |
if search_terms: | |
combined_mask = None | |
for term in search_terms: | |
mask = filtered_df["search_dummy"].str.contains( | |
term, case=False, na=False | |
) | |
if combined_mask is None: | |
combined_mask = mask | |
else: | |
combined_mask = combined_mask | mask | |
if combined_mask is not None: | |
filtered_df = filtered_df[combined_mask] | |
# Drop the search dummy column before returning | |
visible_columns = [col for col in filtered_df.columns if col != "search_dummy"] | |
return filtered_df[visible_columns] | |
def refresh_data_with_filters( | |
version=CURRENT_VERSION, search_query="", comment_languages=None, selected_columns=None | |
): | |
""" | |
Refresh the leaderboard data and update all components with filtering. | |
Ensures we handle cases where dataframes might have limited columns. | |
""" | |
global LEADERBOARD_DF | |
try: | |
logger.info(f"Performing refresh of leaderboard data with filters...") | |
# Get new data | |
main_df = get_leaderboard_df(version=version) | |
LEADERBOARD_DF = main_df | |
category_dfs = [ | |
get_category_leaderboard_df(category, version=version) | |
for category in CATEGORIES | |
] | |
selected_columns = [ | |
x.lower() | |
.replace(" ", "_") | |
.replace("(", "") | |
.replace(")", "") | |
.replace("_recall", "_recall_binary") | |
.replace("_precision", "_precision_binary") | |
for x in selected_columns | |
] | |
# Log the actual columns we have | |
logger.info(f"Main dataframe columns: {list(main_df.columns)}") | |
# Apply filters to each dataframe | |
filtered_main_df = search_filter_leaderboard( | |
main_df, search_query, comment_languages, version | |
) | |
filtered_category_dfs = [ | |
search_filter_leaderboard(df, search_query, comment_languages, version) | |
for df in category_dfs | |
] | |
# Get available columns from the dataframe | |
available_columns = list(filtered_main_df.columns) | |
# Filter selected columns to only those available in the data | |
if selected_columns: | |
# Convert display names to internal names first | |
internal_selected_columns = [ | |
x.lower() | |
.replace(" ", "_") | |
.replace("(", "") | |
.replace(")", "") | |
.replace("_recall", "_recall_binary") | |
.replace("_precision", "_precision_binary") | |
for x in selected_columns | |
] | |
valid_selected_columns = [ | |
col for col in internal_selected_columns if col in available_columns | |
] | |
if not valid_selected_columns and "model_name" in available_columns: | |
# Fallback if conversion/filtering leads to empty selection | |
valid_selected_columns = ["model_name"] + [ | |
col | |
for col in get_default_visible_columns() | |
if col in available_columns | |
] | |
else: | |
# If no columns were selected in the dropdown, use default visible columns that exist | |
valid_selected_columns = [ | |
col for col in get_default_visible_columns() if col in available_columns | |
] | |
# Initialize dataframes for display with valid selected columns | |
main_dataframe = init_leaderboard(filtered_main_df, valid_selected_columns) | |
# For category dataframes, get columns that actually exist in each one | |
category_dataframes = [] | |
for df in filtered_category_dfs: | |
df_columns = list(df.columns) | |
df_valid_columns = [ | |
col for col in valid_selected_columns if col in df_columns | |
] | |
if not df_valid_columns and "model_name" in df_columns: | |
df_valid_columns = ["model_name"] + get_default_visible_columns() | |
category_dataframes.append(init_leaderboard(df, df_valid_columns)) | |
return main_dataframe, *category_dataframes | |
except Exception as e: | |
logger.error(f"Error in refresh with filters: {e}") | |
# Return the current leaderboards on error | |
return leaderboard, *[ | |
tab.children[0] for tab in category_tabs.children[1 : len(CATEGORIES) + 1] | |
] | |
def submit_results( | |
model_name: str, | |
base_model: str, | |
revision: str, | |
precision: str, | |
weight_type: str, | |
model_type: str, | |
mode: str, | |
submission_file: tempfile._TemporaryFileWrapper, | |
version: str, | |
review_model_type: ReviewModelType, | |
programming_language: str, | |
comment_language: str, | |
): | |
""" | |
Handle submission of results with model metadata. | |
""" | |
if submission_file is None: | |
return styled_error("No submission file provided") | |
if not model_name: | |
return styled_error("Model name is required") | |
if not model_type: | |
return styled_error("Please select a model type") | |
if not mode: | |
return styled_error("Please select an inference mode") | |
file_path = submission_file.name | |
logger.info(f"Received submission for model {model_name}: {file_path}") | |
# Add metadata to the submission | |
metadata = { | |
"model_name": model_name, | |
"base_model": base_model, | |
"revision": revision if revision else "main", | |
"precision": precision, | |
"weight_type": weight_type, | |
"model_type": model_type, | |
"mode": mode, | |
"version": version, | |
"review_model_type": review_model_type, | |
"programming_language": programming_language, | |
"comment_language": comment_language, | |
} | |
# Process the submission | |
result = process_submission(file_path, metadata, version=version) | |
# Refresh the leaderboard data | |
global LEADERBOARD_DF | |
try: | |
logger.info( | |
f"Refreshing leaderboard data after submission for version {version}..." | |
) | |
LEADERBOARD_DF = get_leaderboard_df(version=version) | |
logger.info("Refreshed leaderboard data after submission") | |
except Exception as e: | |
logger.error(f"Error refreshing leaderboard data: {e}") | |
return result | |
def refresh_data(version=CURRENT_VERSION): | |
""" | |
Refresh the leaderboard data and update all components. | |
""" | |
try: | |
logger.info(f"Performing scheduled refresh of leaderboard data...") | |
# Get new data | |
main_df = get_leaderboard_df(version=version) | |
category_dfs = [ | |
get_category_leaderboard_df(category, version=version) | |
for category in CATEGORIES | |
] | |
# For gr.Dataframe, we return the actual dataframes | |
return main_df, *category_dfs | |
except Exception as e: | |
logger.error(f"Error in scheduled refresh: {e}") | |
return None, *[None for _ in CATEGORIES] | |
def update_leaderboards(version): | |
""" | |
Update all leaderboard components with data for the selected version. | |
""" | |
try: | |
new_df = get_leaderboard_df(version=version) | |
category_dfs = [ | |
get_category_leaderboard_df(category, version=version) | |
for category in CATEGORIES | |
] | |
return new_df, *category_dfs | |
except Exception as e: | |
logger.error(f"Error updating leaderboards for version {version}: {e}") | |
return None, *[None for _ in CATEGORIES] | |
def create_performance_plot( | |
selected_models, category, metric="f1_binary", version=CURRENT_VERSION | |
): | |
""" | |
Create a radar plot comparing model performance for selected models. | |
""" | |
if category == "All Results": | |
df = get_leaderboard_df(version=version) | |
else: | |
df = get_category_leaderboard_df(category, version=version) | |
if df.empty: | |
return go.Figure() | |
# Lowercase model_name in df and selected_models | |
df = df.copy() | |
df["model_name"] = df["model_name"].str.lower() | |
selected_models = [m.lower() for m in selected_models] | |
df = df[df["model_name"].isin(selected_models)] | |
metric_cols = [col for col in df.columns if metric in col] | |
fig = go.Figure() | |
colors = ["#8FCCCC", "#C2A4B6", "#98B4A6", "#B68F7C"] | |
for idx, model in enumerate(selected_models): | |
model_data = df[df["model_name"] == model] | |
if not model_data.empty: | |
values = model_data[metric_cols].values[0].tolist() | |
values = values + [values[0]] | |
categories = [col.replace(f"_{metric}", "") for col in metric_cols] | |
# Replace 'jailbreaked' with 'jailbroken' in categories | |
categories = [cat.replace('jailbreaked', 'jailbroken') for cat in categories] | |
categories = categories + [categories[0]] | |
fig.add_trace( | |
go.Scatterpolar( | |
r=values, | |
theta=categories, | |
name=model, | |
line_color=colors[idx % len(colors)], | |
fill="toself", | |
) | |
) | |
fig.update_layout( | |
paper_bgcolor="#000000", | |
plot_bgcolor="#000000", | |
font={"color": "#ffffff"}, | |
title={ | |
"text": f"{category} - {metric.upper()} Score Comparison", | |
"font": {"color": "#ffffff", "size": 24}, | |
}, | |
polar=dict( | |
bgcolor="#000000", | |
radialaxis=dict( | |
visible=True, | |
range=[0, 1], | |
gridcolor="#333333", | |
linecolor="#333333", | |
tickfont={"color": "#ffffff"}, | |
), | |
angularaxis=dict( | |
gridcolor="#333333", | |
linecolor="#333333", | |
tickfont={"color": "#ffffff"}, | |
), | |
), | |
height=600, | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
y=0.99, | |
xanchor="right", | |
x=0.99, | |
bgcolor="rgba(0,0,0,0.5)", | |
font={"color": "#ffffff"}, | |
), | |
) | |
return fig | |
def update_model_choices(version): | |
""" | |
Update the list of available models for the given version. | |
""" | |
df = get_leaderboard_df(version=version) | |
if df.empty: | |
return [] | |
return sorted(df["model_name"].str.lower().unique().tolist()) | |
def update_visualization(selected_models, selected_category, selected_metric, version): | |
""" | |
Update the visualization based on user selections. | |
""" | |
if not selected_models: | |
return go.Figure() | |
return create_performance_plot( | |
selected_models, selected_category, selected_metric, version | |
) | |
# Create Gradio app | |
demo = gr.Blocks(css=custom_css, theme=custom_theme) | |
CATEGORY_DISPLAY_MAP = { | |
"Python": "Python", | |
"Java": "Java", | |
"Scala": "Scala", | |
"Go": "Go" | |
} | |
# Create reverse mapping for lookups | |
CATEGORY_REVERSE_MAP = {v: k for k, v in CATEGORY_DISPLAY_MAP.items()} | |
with demo: | |
gr.HTML(TITLE) | |
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
tabs = gr.Tabs(elem_classes="tab-buttons") | |
with tabs: | |
with gr.TabItem("Leaderboard", elem_id="codereview-leaderboard-tab", id=0): | |
with gr.Row(): | |
version_selector = gr.Dropdown( | |
choices=BENCHMARK_VERSIONS, | |
label="Benchmark Version", | |
value=CURRENT_VERSION, | |
interactive=True, | |
elem_classes="version-selector", | |
scale=1, | |
visible=False, | |
) | |
with gr.Row(): | |
search_input = gr.Textbox( | |
placeholder="Search by models (use ; to split)", | |
label="Search", | |
elem_id="search-bar", | |
scale=2, | |
) | |
comment_language_filter = gr.Dropdown( | |
choices=["en", "ru"], | |
label="Comment Language", | |
multiselect=True, | |
value=[], | |
interactive=True, | |
scale=1, | |
) | |
programming_language_filter = gr.Dropdown( | |
choices=["Python", "Java", "Scala", "Go"], | |
label="Programming Language", | |
multiselect=True, | |
value=[], | |
interactive=True, | |
scale=1, | |
) | |
with gr.Row(): | |
topic_filter = gr.Dropdown( | |
choices=TOPICS, | |
label="Topic", | |
multiselect=True, | |
value=[], | |
interactive=True, | |
scale=2, | |
) | |
column_selector = gr.Dropdown( | |
choices=get_all_column_choices(), | |
label="Columns", | |
multiselect=True, | |
value=get_initial_columns(), | |
interactive=True, | |
visible=False, | |
scale=1, | |
) | |
with gr.Row(): | |
refresh_button = gr.Button( | |
"Refresh", scale=0, elem_id="refresh-button" | |
) | |
# Create tabs for each category | |
with gr.Tabs(elem_classes="category-tabs") as category_tabs: | |
# First tab for average metrics across all categories | |
with gr.TabItem("All Results", elem_id="overall-tab"): | |
leaderboard = init_leaderboard(LEADERBOARD_DF) | |
# Create a tab for each category using display names | |
for category in CATEGORIES: | |
display_name = CATEGORY_DISPLAY_MAP.get(category, category) | |
elem_id = f"category-{display_name.lower().replace(' ', '-').replace('&', 'and')}-tab" | |
with gr.TabItem(display_name, elem_id=elem_id): | |
category_df = get_category_leaderboard_df( | |
category, version=CURRENT_VERSION | |
) | |
category_leaderboard = init_leaderboard(category_df) | |
# Connect search and filter inputs to update function | |
def update_with_search_filters( | |
version=CURRENT_VERSION, | |
search_query="", | |
comment_languages=None, | |
selected_columns=None, | |
): | |
""" | |
Update the leaderboards with search and filter settings. | |
""" | |
return refresh_data_with_filters( | |
version, search_query, comment_languages, selected_columns | |
) | |
# Refresh button functionality | |
def refresh_and_update( | |
version, search_query, comment_languages, selected_columns | |
): | |
""" | |
Refresh data, update LEADERBOARD_DF, and return updated components. | |
""" | |
global LEADERBOARD_DF | |
main_df = get_leaderboard_df(version=version) | |
LEADERBOARD_DF = main_df # Update the global DataFrame | |
return refresh_data_with_filters( | |
version, search_query, comment_languages, selected_columns | |
) | |
refresh_button.click( | |
fn=refresh_and_update, | |
inputs=[ | |
version_selector, | |
search_input, | |
comment_language_filter, | |
column_selector, | |
], | |
outputs=[leaderboard] | |
+ [ | |
category_tabs.children[i].children[0] | |
for i in range(1, len(CATEGORIES) + 1) | |
], | |
) | |
# Search input functionality | |
search_input.change( | |
fn=refresh_data_with_filters, | |
inputs=[ | |
version_selector, | |
search_input, | |
comment_language_filter, | |
column_selector, | |
], | |
outputs=[leaderboard] | |
+ [ | |
category_tabs.children[i].children[0] | |
for i in range(1, len(CATEGORIES) + 1) | |
], | |
) | |
# Comment language filter functionality | |
comment_language_filter.change( | |
fn=refresh_data_with_filters, | |
inputs=[ | |
version_selector, | |
search_input, | |
comment_language_filter, | |
column_selector, | |
], | |
outputs=[leaderboard] | |
+ [ | |
category_tabs.children[i].children[0] | |
for i in range(1, len(CATEGORIES) + 1) | |
], | |
) | |
# Version selector functionality | |
version_selector.change( | |
fn=refresh_data_with_filters, | |
inputs=[ | |
version_selector, | |
search_input, | |
comment_language_filter, | |
column_selector, | |
], | |
outputs=[leaderboard] | |
+ [ | |
category_tabs.children[i].children[0] | |
for i in range(1, len(CATEGORIES) + 1) | |
], | |
) | |
# Update the update_columns function to handle updating all tabs at once | |
def update_columns(selected_columns): | |
""" | |
Update all leaderboards to show the selected columns. | |
Ensures all selected columns are preserved in the update. | |
""" | |
try: | |
logger.info(f"Updating columns to show: {selected_columns}") | |
# If no columns are selected, use default visible columns | |
if not selected_columns or len(selected_columns) == 0: | |
selected_columns = get_default_visible_columns() | |
logger.info( | |
f"No columns selected, using defaults: {selected_columns}" | |
) | |
# Convert display names to internal names | |
internal_selected_columns = [ | |
x.lower() | |
.replace(" ", "_") | |
.replace("(", "") | |
.replace(")", "") | |
.replace("_recall", "_recall_binary") | |
.replace("_precision", "_precision_binary") | |
for x in selected_columns | |
] | |
# Get the current data with ALL columns preserved | |
main_df = get_leaderboard_df(version=version_selector.value) | |
# Get category dataframes with ALL columns preserved | |
category_dfs = [ | |
get_category_leaderboard_df( | |
category, version=version_selector.value | |
) | |
for category in CATEGORIES | |
] | |
# Log columns for debugging | |
logger.info(f"Main dataframe columns: {list(main_df.columns)}") | |
logger.info( | |
f"Selected columns (internal): {internal_selected_columns}" | |
) | |
# IMPORTANT: Make sure model_name is always included | |
if ( | |
"model_name" in main_df.columns | |
and "model_name" not in internal_selected_columns | |
): | |
internal_selected_columns = [ | |
"model_name" | |
] + internal_selected_columns | |
# Initialize the main leaderboard with the selected columns | |
# We're passing the internal_selected_columns directly to preserve the selection | |
main_leaderboard = init_leaderboard( | |
main_df, internal_selected_columns | |
) | |
# Initialize category dataframes with the same selected columns | |
# This ensures consistency across all tabs | |
category_leaderboards = [] | |
for df in category_dfs: | |
# Use the same selected columns for each category | |
# init_leaderboard will automatically handle filtering to columns that exist | |
category_leaderboards.append( | |
init_leaderboard(df, internal_selected_columns) | |
) | |
return main_leaderboard, *category_leaderboards | |
except Exception as e: | |
logger.error(f"Error updating columns: {e}") | |
import traceback | |
logger.error(traceback.format_exc()) | |
return leaderboard, *[ | |
tab.children[0] | |
for tab in category_tabs.children[1 : len(CATEGORIES) + 1] | |
] | |
# Connect column selector to update function | |
column_selector.change( | |
fn=update_columns, | |
inputs=[column_selector], | |
outputs=[leaderboard] | |
+ [ | |
category_tabs.children[i].children[0] | |
for i in range(1, len(CATEGORIES) + 1) | |
], | |
) | |
# with gr.TabItem("About", elem_id="codereview-about-tab", id=2): | |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("Submit", elem_id="codereview-submit-tab", id=1): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
# with gr.Column(scale=3): | |
# gr.Markdown("# ✉️✨ Submit your results here!", elem_classes="markdown-text") | |
with gr.Column(scale=1): | |
# Add version selector specifically for the submission tab | |
submission_version_selector = gr.Dropdown( | |
choices=BENCHMARK_VERSIONS, | |
label="Benchmark Version", | |
value=CURRENT_VERSION, | |
interactive=True, | |
elem_classes="version-selector", | |
visible=False, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
mode_selector = gr.Dropdown( | |
choices=[m.name for m in Mode], | |
label="Mode", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
revision_name_textbox = gr.Textbox( | |
label="Revision commit", placeholder="main" | |
) | |
model_type = gr.Dropdown( | |
choices=[ | |
t.to_str("-") | |
for t in ModelType | |
if t != ModelType.Unknown and t != ModelType.ClosedSource | |
], | |
label="Model type", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
review_model_type = gr.Dropdown( | |
choices=[t.name for t in ReviewModelType], | |
label="Review model type", | |
multiselect=False, | |
value=ReviewModelType.CUSTOM.name, | |
interactive=True, | |
) | |
programming_language_selector = gr.Dropdown( | |
choices=["Python", "Java", "Scala", "Go"], | |
label="Programming Language", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
comment_language_selector = gr.Dropdown( | |
choices=["en", "ru"], | |
label="Comment Language", | |
multiselect=False, | |
value="en", | |
interactive=True, | |
) | |
with gr.Column(): | |
precision = gr.Dropdown( | |
choices=[ | |
i.name for i in Precision if i != Precision.Unknown | |
], | |
label="Precision", | |
multiselect=False, | |
value="float16", | |
interactive=True, | |
) | |
weight_type = gr.Dropdown( | |
choices=[i.name for i in WeightType], | |
label="Weights type", | |
multiselect=False, | |
value="Original", | |
interactive=True, | |
) | |
base_model_name_textbox = gr.Textbox( | |
label="Base model (for delta or adapter weights)" | |
) | |
with gr.Row(): | |
file_input = gr.File( | |
label="Upload JSONL Results File", file_types=[".jsonl"] | |
) | |
submit_button = gr.Button("Submit Results") | |
result_output = gr.Markdown() | |
submit_button.click( | |
fn=submit_results, | |
inputs=[ | |
model_name_textbox, | |
base_model_name_textbox, | |
revision_name_textbox, | |
precision, | |
weight_type, | |
model_type, | |
mode_selector, | |
file_input, | |
submission_version_selector, | |
review_model_type, | |
programming_language_selector, | |
comment_language_selector, | |
], | |
outputs=result_output, | |
) | |
# Version selector functionality | |
version_selector.change( | |
fn=update_leaderboards, | |
inputs=[version_selector], | |
outputs=[leaderboard] | |
+ [ | |
category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1) | |
], | |
).then( | |
lambda version: refresh_data_with_filters(version), | |
inputs=[version_selector], | |
outputs=[leaderboard] | |
+ [ | |
category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1) | |
], | |
) | |
# Set up the scheduler to refresh data periodically | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(refresh_data, "interval", minutes=30) | |
scheduler.start() | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |