Spaces:
Sleeping
Sleeping
""" | |
GuardBench Leaderboard Application | |
""" | |
import os | |
import json | |
import tempfile | |
import logging | |
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
GUARDBENCH_COLUMN, | |
DISPLAY_COLS, | |
METRIC_COLS, | |
HIDDEN_COLS, | |
NEVER_HIDDEN_COLS, | |
CATEGORIES, | |
TEST_TYPES, | |
ModelType, | |
Precision, | |
WeightType | |
) | |
from src.display.formatting import styled_message, styled_error, styled_warning | |
from src.envs import ( | |
ADMIN_USERNAME, | |
ADMIN_PASSWORD, | |
RESULTS_DATASET_ID, | |
SUBMITTER_TOKEN, | |
TOKEN, | |
DATA_PATH | |
) | |
from src.populate import get_leaderboard_df, download_leaderboard_data, get_category_leaderboard_df | |
from src.submission.submit import process_submission | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# Ensure data directory exists | |
os.makedirs(DATA_PATH, exist_ok=True) | |
# Available benchmark versions | |
BENCHMARK_VERSIONS = ["v0"] | |
CURRENT_VERSION = "v0" | |
# Initialize leaderboard data | |
try: | |
logger.info("Initializing leaderboard data...") | |
LEADERBOARD_DF = get_leaderboard_df(version=CURRENT_VERSION) | |
logger.info(f"Loaded leaderboard with {len(LEADERBOARD_DF)} entries") | |
except Exception as e: | |
logger.error(f"Error loading leaderboard data: {e}") | |
LEADERBOARD_DF = pd.DataFrame() | |
def init_leaderboard(dataframe): | |
""" | |
Initialize the leaderboard component. | |
""" | |
if dataframe is None or dataframe.empty: | |
# Create an empty dataframe with the right columns | |
columns = [getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS] | |
dataframe = pd.DataFrame(columns=columns) | |
logger.warning("Initializing empty leaderboard") | |
return Leaderboard( | |
value=dataframe, | |
datatype=[getattr(GUARDBENCH_COLUMN, col).type for col in DISPLAY_COLS], | |
select_columns=SelectColumns( | |
default_selection=[getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS], | |
cant_deselect=[getattr(GUARDBENCH_COLUMN, col).name for col in NEVER_HIDDEN_COLS], | |
label="Select Columns to Display:", | |
), | |
search_columns=[GUARDBENCH_COLUMN.model_name.name], | |
hide_columns=[getattr(GUARDBENCH_COLUMN, col).name for col in HIDDEN_COLS], | |
filter_columns=[ | |
ColumnFilter(GUARDBENCH_COLUMN.model_type.name, type="checkboxgroup", label="Model types"), | |
], | |
interactive=False, | |
) | |
def submit_results( | |
model_name: str, | |
base_model: str, | |
revision: str, | |
precision: str, | |
weight_type: str, | |
model_type: str, | |
submission_file: tempfile._TemporaryFileWrapper, | |
version: str | |
): | |
""" | |
Handle submission of results with model metadata. | |
""" | |
if submission_file is None: | |
return styled_error("No submission file provided") | |
if not model_name: | |
return styled_error("Model name is required") | |
if not model_type: | |
return styled_error("Please select a model type") | |
file_path = submission_file.name | |
logger.info(f"Received submission for model {model_name}: {file_path}") | |
# Add metadata to the submission | |
metadata = { | |
"model_name": model_name, | |
"base_model": base_model, | |
"revision": revision if revision else "main", | |
"precision": precision, | |
"weight_type": weight_type, | |
"model_type": model_type, | |
"version": version | |
} | |
# Process the submission | |
result = process_submission(file_path, metadata, version=version) | |
# Refresh the leaderboard data | |
global LEADERBOARD_DF | |
try: | |
logger.info(f"Refreshing leaderboard data after submission for version {version}...") | |
LEADERBOARD_DF = get_leaderboard_df(version=version) | |
logger.info("Refreshed leaderboard data after submission") | |
except Exception as e: | |
logger.error(f"Error refreshing leaderboard data: {e}") | |
return result | |
def refresh_data(version=CURRENT_VERSION): | |
""" | |
Refresh the leaderboard data from HuggingFace. | |
""" | |
global LEADERBOARD_DF | |
try: | |
logger.info(f"Performing scheduled refresh of leaderboard data for version {version}...") | |
LEADERBOARD_DF = get_leaderboard_df(version=version) | |
logger.info("Scheduled refresh of leaderboard data completed") | |
except Exception as e: | |
logger.error(f"Error in scheduled refresh: {e}") | |
return LEADERBOARD_DF | |
def update_leaderboards(version): | |
""" | |
Update all leaderboard components with data for the selected version. | |
""" | |
new_df = get_leaderboard_df(version=version) | |
category_dfs = [get_category_leaderboard_df(category, version=version) for category in CATEGORIES] | |
return [init_leaderboard(new_df)] + [init_leaderboard(df) for df in category_dfs] | |
# Create Gradio app | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Column(scale=1): | |
version_selector = gr.Dropdown( | |
choices=BENCHMARK_VERSIONS, | |
label="Benchmark Version", | |
value=CURRENT_VERSION, | |
interactive=True, | |
elem_classes="version-selector" | |
) | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Leaderboard", elem_id="guardbench-leaderboard-tab", id=0): | |
refresh_button = gr.Button("Refresh Leaderboard") | |
# Create tabs for each category | |
with gr.Tabs(elem_classes="category-tabs") as category_tabs: | |
# First tab for average metrics across all categories | |
with gr.TabItem("π Overall Performance", elem_id="overall-tab"): | |
leaderboard = init_leaderboard(LEADERBOARD_DF) | |
# Create a tab for each category | |
for category in CATEGORIES: | |
with gr.TabItem(f"{category}", elem_id=f"category-{category.lower().replace(' ', '-')}-tab"): | |
category_df = get_category_leaderboard_df(category, version=CURRENT_VERSION) | |
category_leaderboard = init_leaderboard(category_df) | |
# Refresh button functionality | |
refresh_button.click( | |
fn=lambda: [ | |
init_leaderboard(get_leaderboard_df(version=version_selector.value)), | |
*[init_leaderboard(get_category_leaderboard_df(category, version=version_selector.value)) for category in CATEGORIES] | |
], | |
inputs=[], | |
outputs=[leaderboard] + [category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)] | |
) | |
with gr.TabItem("π About", elem_id="guardbench-about-tab", id=1): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Submit", elem_id="guardbench-submit-tab", id=2): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your results here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
model_type = gr.Dropdown( | |
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
label="Model type", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
with gr.Column(): | |
precision = gr.Dropdown( | |
choices=[i.name for i in Precision if i != Precision.Unknown], | |
label="Precision", | |
multiselect=False, | |
value="float16", | |
interactive=True, | |
) | |
weight_type = gr.Dropdown( | |
choices=[i.name for i in WeightType], | |
label="Weights type", | |
multiselect=False, | |
value="Original", | |
interactive=True, | |
) | |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
with gr.Row(): | |
file_input = gr.File( | |
label="Upload JSONL Results File", | |
file_types=[".jsonl"] | |
) | |
submit_button = gr.Button("Submit Results") | |
result_output = gr.Markdown() | |
submit_button.click( | |
fn=submit_results, | |
inputs=[ | |
model_name_textbox, | |
base_model_name_textbox, | |
revision_name_textbox, | |
precision, | |
weight_type, | |
model_type, | |
file_input, | |
version_selector | |
], | |
outputs=result_output | |
) | |
# Version selector functionality | |
version_selector.change( | |
fn=update_leaderboards, | |
inputs=[version_selector], | |
outputs=[leaderboard] + [category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)] | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=10, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
with gr.Accordion("βΉοΈ Dataset Information", open=False): | |
dataset_info = gr.Markdown(f""" | |
## Dataset Information | |
Results are stored in the HuggingFace dataset: [{RESULTS_DATASET_ID}](https://huggingface.co/datasets/{RESULTS_DATASET_ID}) | |
Last updated: {pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S UTC")} | |
""") | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(lambda: refresh_data(version=CURRENT_VERSION), 'interval', minutes=30) | |
scheduler.start() | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) | |