Spaces:
Sleeping
Sleeping
import json | |
import os | |
import pandas as pd | |
from src.display.formatting import has_no_nan_values, make_clickable_model | |
from src.display.utils import AutoEvalColumn, EvalQueueColumn | |
from src.leaderboard.read_evals import get_raw_eval_results | |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
"""Creates a dataframe from all the individual experiment results""" | |
raw_data = get_raw_eval_results(results_path, requests_path) | |
all_data_json = [v.to_dict() for v in raw_data] | |
df = pd.DataFrame.from_records(all_data_json) | |
# ------------------------------------------------------------------ | |
# Fallback: if no evaluation results are found we populate the | |
# leaderboard with a single example model. This guarantees that a | |
# freshly deployed Space shows a non-empty leaderboard and it serves | |
# as a template for the expected columns/values. | |
# ------------------------------------------------------------------ | |
if df.empty: | |
example_row = {} | |
# Populate benchmark metrics with the default value 0.5 using internal column names | |
for metric in benchmark_cols: | |
example_row[metric] = 0.5 | |
# Minimal metadata so that the row displays nicely | |
example_row[AutoEvalColumn.model.name] = make_clickable_model("example/model") | |
example_row[AutoEvalColumn.average.name] = 0.5 | |
example_row[AutoEvalColumn.model_type_symbol.name] = "π’" | |
example_row[AutoEvalColumn.model_type.name] = "pretrained" | |
example_row[AutoEvalColumn.precision.name] = "float16" | |
example_row[AutoEvalColumn.weight_type.name] = "Original" | |
example_row[AutoEvalColumn.still_on_hub.name] = True | |
example_row[AutoEvalColumn.architecture.name] = "Transformer" | |
example_row[AutoEvalColumn.revision.name] = "main" | |
example_row[AutoEvalColumn.license.name] = "apache-2.0" | |
# Any missing columns will be created later in the function | |
df = pd.DataFrame([example_row]) | |
# Sort primarily by LLM exact-match Pass@1 metric; if not present, fall back to average | |
preferred_cols = [] | |
if hasattr(AutoEvalColumn, "pass_at_1"): | |
preferred_cols.append(AutoEvalColumn.pass_at_1.name) | |
preferred_cols.append(AutoEvalColumn.average.name) | |
for col in preferred_cols: | |
if col in df.columns: | |
df = df.sort_values(by=[col], ascending=False) | |
break | |
# Ensure all expected columns exist, add missing ones with NaN so selection does not fail | |
for expected in cols: | |
if expected not in df.columns: | |
df[expected] = pd.NA | |
df = df[cols].round(decimals=2) | |
# filter out if any of the benchmarks have not been produced | |
df = df[has_no_nan_values(df, benchmark_cols)] | |
return df | |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
"""Creates the different dataframes for the evaluation queues requestes""" | |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
all_evals = [] | |
for entry in entries: | |
if ".json" in entry: | |
file_path = os.path.join(save_path, entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
elif ".md" not in entry: | |
# this is a folder | |
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] | |
for sub_entry in sub_entries: | |
file_path = os.path.join(save_path, entry, sub_entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
return df_finished[cols], df_running[cols], df_pending[cols] | |