File size: 9,654 Bytes
d4d998a
346c3c5
d4d998a
 
 
 
 
 
346c3c5
5565a34
d4d998a
346c3c5
 
 
 
d4d998a
5565a34
346c3c5
5565a34
346c3c5
 
 
 
 
 
 
5565a34
346c3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5565a34
 
346c3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5565a34
d4d998a
 
 
 
 
 
3c01baa
 
 
 
 
d4d998a
 
3c01baa
 
 
 
 
 
 
 
d4d998a
 
 
 
 
 
 
 
 
3c01baa
d4d998a
 
3c01baa
 
 
 
 
 
 
 
d4d998a
 
 
 
 
 
 
 
 
3c01baa
d4d998a
 
3c01baa
346c3c5
d4d998a
 
 
935d31d
3c01baa
b1cb07d
346c3c5
d4d998a
3c01baa
 
f990f50
3c01baa
 
 
346c3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
d4d998a
3c01baa
346c3c5
d4d998a
b1cb07d
 
346c3c5
 
 
5565a34
346c3c5
5565a34
346c3c5
5565a34
 
346c3c5
5565a34
 
 
 
d4d998a
 
 
 
 
 
 
3c01baa
 
 
 
 
 
d4d998a
 
 
3c01baa
 
346c3c5
 
 
 
 
 
 
 
 
 
 
 
3c01baa
d4d998a
3c01baa
d4d998a
 
 
 
 
3c01baa
d4d998a
 
3c01baa
d4d998a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""
Process CodeReview Bench leaderboard data and submissions.
"""

import json
import os
import pandas as pd
from datetime import datetime
from typing import Dict, List, Tuple, Optional
import numpy as np

from src.display.utils import (
    CODEREVIEW_COLUMN, DISPLAY_COLS, CATEGORIES, COMMENT_LANGUAGES, EXAMPLE_CATEGORIES,
    MULTIMETRIC_METRICS, EXACT_MATCH_METRICS
)


def process_jsonl_submission(file_path: str) -> Tuple[List[Dict], str]:
    """
    Process a JSONL submission file for CodeReview Bench.
    
    Args:
        file_path: Path to the JSONL submission file
        
    Returns:
        Tuple of (entries_list, message)
    """
    try:
        entries = []
        with open(file_path, 'r', encoding='utf-8') as f:
            for line_num, line in enumerate(f, 1):
                line = line.strip()
                if not line:
                    continue
                    
                try:
                    entry = json.loads(line)
                    
                    # Validate required fields
                    required_fields = ['model_name', 'programming_language', 'comment_language']
                    missing_fields = [field for field in required_fields if field not in entry]
                    if missing_fields:
                        return [], f"Missing required fields {missing_fields} in line {line_num}"
                    
                    # Validate metrics exist
                    has_multimetric = any(metric in entry for metric in MULTIMETRIC_METRICS)
                    has_exact_match = any(metric in entry for metric in EXACT_MATCH_METRICS)
                    
                    if not has_multimetric and not has_exact_match:
                        return [], f"No valid metrics found in line {line_num}. Required: {MULTIMETRIC_METRICS + EXACT_MATCH_METRICS}"
                    
                    entries.append(entry)
                    
                except json.JSONDecodeError as e:
                    return [], f"Invalid JSON in line {line_num}: {e}"
                    
        if not entries:
            return [], "No valid entries found in submission file"
            
        return entries, f"Successfully processed {len(entries)} entries"
        
    except Exception as e:
        return [], f"Error processing submission: {e}"


def calculate_overall_score(entry: Dict) -> float:
    """
    Calculate overall score for a CodeReview Bench entry.
    
    Args:
        entry: Dictionary containing model evaluation results
        
    Returns:
        Overall score as float
    """
    # Calculate multimetric average
    multimetric_scores = []
    for metric in MULTIMETRIC_METRICS:
        if metric in entry and isinstance(entry[metric], (int, float)):
            multimetric_scores.append(entry[metric])
    
    multimetric_avg = np.mean(multimetric_scores) if multimetric_scores else 0
    
    # Calculate exact match average
    exact_match_scores = []
    for metric in EXACT_MATCH_METRICS:
        if metric in entry and isinstance(entry[metric], (int, float)):
            exact_match_scores.append(entry[metric])
    
    exact_match_avg = np.mean(exact_match_scores) if exact_match_scores else 0
    
    # Weighted combination (can be adjusted based on requirements)
    overall_score = (multimetric_avg * 0.7) + (exact_match_avg * 0.3)
    
    return overall_score


def load_leaderboard_data(file_path: str) -> Dict:
    """
    Load the leaderboard data from a JSON file.
    """
    if not os.path.exists(file_path):
        version = "v0"
        if "_v" in file_path:
            version = file_path.split("_")[-1].split(".")[0]
        return {"entries": [], "last_updated": datetime.now().isoformat(), "version": version}

    with open(file_path, 'r') as f:
        data = json.load(f)

    # Ensure version field exists
    if "version" not in data:
        version = "v0"
        if "_v" in file_path:
            version = file_path.split("_")[-1].split(".")[0]
        data["version"] = version

    return data


def save_leaderboard_data(data: Dict, file_path: str) -> None:
    """
    Save the leaderboard data to a JSON file.
    """
    # Ensure the directory exists
    os.makedirs(os.path.dirname(file_path), exist_ok=True)

    # Update the last_updated timestamp
    data["last_updated"] = datetime.now().isoformat()

    # Ensure version is set
    if "version" not in data:
        version = "v0"
        if "_v" in file_path:
            version = file_path.split("_")[-1].split(".")[0]
        data["version"] = version

    with open(file_path, 'w') as f:
        json.dump(data, f, indent=2)


def leaderboard_to_dataframe(leaderboard_data: Dict) -> pd.DataFrame:
    """
    Convert leaderboard data to a pandas DataFrame for display.
    """
    rows = []

    for entry in leaderboard_data.get("entries", []):
        model_name = entry.get("model_name", "Unknown Model")

        # Extract basic metadata
        row = {
            "model_name": model_name,
            "model_type": entry.get("model_type", "Unknown"),
            "mode": entry.get("mode", "Strict"),
            "submission_date": entry.get("submission_date", ""),
            "version": entry.get("version", "v0"),
            "review_model_type": entry.get("review_model_type", "custom").lower()
        }

        # Add additional metadata fields if present
        for key in ["base_model", "revision", "precision", "weight_type", "topic", "programming_language", "comment_language"]:
            if key in entry:
                row[key] = entry[key]

        # Add multimetric scores
        for metric in MULTIMETRIC_METRICS:
            if metric in entry:
                row[metric] = entry[metric]
            else:
                row[metric] = pd.NA

        # Add exact match metrics
        for metric in EXACT_MATCH_METRICS:
            if metric in entry:
                row[metric] = entry[metric]
            else:
                row[metric] = pd.NA

        # Calculate aggregated metrics
        multimetric_scores = [entry.get(metric, 0) for metric in MULTIMETRIC_METRICS if metric in entry and pd.notna(entry[metric])]
        exact_match_scores = [entry.get(metric, 0) for metric in EXACT_MATCH_METRICS if metric in entry and pd.notna(entry[metric])]

        if multimetric_scores:
            row["multimetric_average"] = np.mean(multimetric_scores)
        else:
            row["multimetric_average"] = pd.NA

        if exact_match_scores:
            row["exact_match_average"] = np.mean(exact_match_scores)
        else:
            row["exact_match_average"] = pd.NA

        # Calculate overall score
        row["overall_score"] = calculate_overall_score(entry)

        # Add language-specific metrics if available
        for lang in COMMENT_LANGUAGES:
            for metric in ["readability", "relevance", "overall_score"]:
                lang_key = f"{lang}_{metric}"
                if lang_key in entry:
                    row[lang_key] = entry[lang_key]
                else:
                    row[lang_key] = pd.NA

        # Add evaluation count
        row["total_evaluations"] = entry.get("total_evaluations", entry.get("evaluation_count", pd.NA))

        rows.append(row)

    # Create DataFrame and sort by overall score
    df = pd.DataFrame(rows)

    # Ensure all expected columns exist
    for metric in MULTIMETRIC_METRICS + EXACT_MATCH_METRICS:
        if metric not in df.columns:
            df[metric] = pd.NA

    # Sort by overall score (descending)
    if not df.empty:
        df = df.sort_values(by="overall_score", ascending=False, na_position='last')

    # Ensure summary columns exist
    summary_cols = ["overall_score", "multimetric_average", "exact_match_average", "total_evaluations"]
    for col in summary_cols:
        if col not in df.columns:
            df[col] = pd.NA

    return df


def add_entries_to_leaderboard(leaderboard_data: Dict, new_entries: List[Dict]) -> Dict:
    """
    Add new entries to the leaderboard, replacing any with the same model name.
    """
    # Create a mapping of existing entries by model name and version
    existing_entries = {
        (entry["model_name"], entry.get("version", "v0")): i
        for i, entry in enumerate(leaderboard_data.get("entries", []))
    }

    # Process each new entry
    for new_entry in new_entries:
        model_name = new_entry.get("model_name")
        version = new_entry.get("version", "v0")

        # Add calculated metrics
        new_entry["overall_score"] = calculate_overall_score(new_entry)
        
        # Calculate averages
        multimetric_scores = [new_entry.get(metric) for metric in MULTIMETRIC_METRICS if metric in new_entry and pd.notna(new_entry[metric])]
        exact_match_scores = [new_entry.get(metric) for metric in EXACT_MATCH_METRICS if metric in new_entry and pd.notna(new_entry[metric])]
        
        if multimetric_scores:
            new_entry["multimetric_average"] = np.mean(multimetric_scores)
        if exact_match_scores:
            new_entry["exact_match_average"] = np.mean(exact_match_scores)

        if (model_name, version) in existing_entries:
            # Replace existing entry
            leaderboard_data["entries"][existing_entries[(model_name, version)]] = new_entry
        else:
            # Add new entry
            if "entries" not in leaderboard_data:
                leaderboard_data["entries"] = []
            leaderboard_data["entries"].append(new_entry)

    # Update the last_updated timestamp
    leaderboard_data["last_updated"] = datetime.now().isoformat()

    return leaderboard_data