File size: 7,722 Bytes
ef635c1
 
 
 
 
15c92e9
ef635c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15c92e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import json
import os
from datetime import datetime, timezone

from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, EVAL_RESULTS_PATH, RESULTS_REPO
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
)

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

def add_new_eval(
    model: str,
    base_model: str,
    revision: str,
    precision: str,
    weight_type: str,
    model_type: str,
):
    global REQUESTED_MODELS
    global USERS_TO_SUBMISSION_DATES
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)

    user_name = ""
    model_path = model
    if "/" in model:
        user_name = model.split("/")[0]
        model_path = model.split("/")[1]

    precision = precision.split(" ")[0]
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    if model_type is None or model_type == "":
        return styled_error("Please select a model type.")

    # Does the model actually exist?
    if revision == "":
        revision = "main"

    # Is the model on the hub?
    if weight_type in ["Delta", "Adapter"]:
        base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
        if not base_model_on_hub:
            return styled_error(f'Base model "{base_model}" {error}')

    if not weight_type == "Adapter":
        model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
        if not model_on_hub:
            return styled_error(f'Model "{model}" {error}')

    # Is the model info correctly filled?
    try:
        model_info = API.model_info(repo_id=model, revision=revision)
    except Exception:
        return styled_error("Could not get your model information. Please fill it up properly.")

    model_size = get_model_size(model_info=model_info, precision=precision)

    # Were the model card and license filled?
    try:
        license = model_info.cardData["license"]
    except Exception:
        return styled_error("Please select a license for your model")

    modelcard_OK, error_msg = check_model_card(model)
    if not modelcard_OK:
        return styled_error(error_msg)

    # Seems good, creating the eval
    print("Adding new eval")

    eval_entry = {
        "model": model,
        "base_model": base_model,
        "revision": revision,
        "precision": precision,
        "weight_type": weight_type,
        "status": "PENDING",
        "submitted_time": current_time,
        "model_type": model_type,
        "likes": model_info.likes,
        "params": model_size,
        "license": license,
        "private": False,
    }

    # Check for duplicate submission
    if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
        return styled_warning("This model has been already submitted.")

    print("Creating eval file")
    OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
    os.makedirs(OUT_DIR, exist_ok=True)
    out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    print("Uploading eval file")
    API.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path.split("eval-queue/")[1],
        repo_id=QUEUE_REPO,
        repo_type="dataset",
        commit_message=f"Add {model} to eval queue",
    )

    # Remove the local file
    os.remove(out_path)

    return styled_message(
        "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
    )

# --------------------------------------------------------
# Manual metrics submission (bypass evaluation queue)
# --------------------------------------------------------

ALL_SUBJECTIVE_FIELDS = [
    "readability",
    "relevance",
    "explanation_clarity",
    "problem_identification",
    "actionability",
    "completeness",
    "specificity",
    "contextual_adequacy",
    "consistency",
    "brevity",
]

def _compute_multimetric(payload: dict) -> float:
    """Average of the 10 subjective metrics."""
    total = sum(float(payload[f]) for f in ALL_SUBJECTIVE_FIELDS)
    return total / len(ALL_SUBJECTIVE_FIELDS)

def add_manual_results(
    model: str,
    revision: str,
    bleu: float,
    readability: int,
    relevance: int,
    explanation_clarity: int,
    problem_identification: int,
    actionability: int,
    completeness: int,
    specificity: int,
    contextual_adequacy: int,
    consistency: int,
    brevity: int,
    pass_at_1: float,
    pass_at_5: float,
    pass_at_10: float,
):
    """Directly submit evaluation metrics for a model and push them to the results dataset."""

    # Basic validation
    if model == "":
        return styled_error("Please specify a model name.")

    if revision == "":
        revision = "main"

    if pass_at_5 < pass_at_1:
        return styled_error("pass@5 must be greater or equal to pass@1")
    if pass_at_10 < pass_at_5:
        return styled_error("pass@10 must be greater or equal to pass@5")

    # Prepare dictionary in the same format used by read_evals.py
    payload_dict = {
        "model": model,
        "revision": revision,
        "bleu": bleu,
        "readability": readability,
        "relevance": relevance,
        "explanation_clarity": explanation_clarity,
        "problem_identification": problem_identification,
        "actionability": actionability,
        "completeness": completeness,
        "specificity": specificity,
        "contextual_adequacy": contextual_adequacy,
        "consistency": consistency,
        "brevity": brevity,
        "pass_at_1": pass_at_1,
        "pass_at_5": pass_at_5,
        "pass_at_10": pass_at_10,
    }

    multimetric = _compute_multimetric(payload_dict)

    # Compose final results file (same structure as api_submit_results)
    result_json = {
        "config": {
            "model_dtype": "unknown",
            "model_name": model,
            "model_sha": revision,
        },
        "results": {
            "bleu": {"score": bleu},
            "multimetric": {"score": multimetric},
            "pass_at_1": {"score": pass_at_1},
            "pass_at_5": {"score": pass_at_5},
            "pass_at_10": {"score": pass_at_10},
        },
    }

    # Add subjective metrics
    for field in ALL_SUBJECTIVE_FIELDS:
        result_json["results"][field] = {"score": payload_dict[field]}

    # Write file locally then upload
    try:
        os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
    except Exception:
        pass

    from datetime import datetime, timezone
    import uuid

    ts = datetime.now(timezone.utc).strftime("%Y%m%dT%H%M%SZ")
    unique_id = uuid.uuid4().hex[:8]
    filename = f"results_{model.replace('/', '_')}_{ts}_{unique_id}.json"
    local_path = os.path.join(EVAL_RESULTS_PATH, filename)

    try:
        with open(local_path, "w") as fp:
            json.dump(result_json, fp)

        API.upload_file(
            path_or_fileobj=local_path,
            path_in_repo=filename,
            repo_id=RESULTS_REPO,
            repo_type="dataset",
            commit_message=f"Add manual results for {model}",
        )
    except Exception as e:
        return styled_error(f"Failed to upload results: {e}")
    finally:
        if os.path.exists(local_path):
            os.remove(local_path)

    return styled_message("Metrics successfully submitted! The leaderboard will refresh shortly.")