Spaces:
Sleeping
Sleeping
File size: 7,722 Bytes
ef635c1 15c92e9 ef635c1 15c92e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import json
import os
from datetime import datetime, timezone
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, EVAL_RESULTS_PATH, RESULTS_REPO
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
base_model: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": revision,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
"private": False,
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)
# --------------------------------------------------------
# Manual metrics submission (bypass evaluation queue)
# --------------------------------------------------------
ALL_SUBJECTIVE_FIELDS = [
"readability",
"relevance",
"explanation_clarity",
"problem_identification",
"actionability",
"completeness",
"specificity",
"contextual_adequacy",
"consistency",
"brevity",
]
def _compute_multimetric(payload: dict) -> float:
"""Average of the 10 subjective metrics."""
total = sum(float(payload[f]) for f in ALL_SUBJECTIVE_FIELDS)
return total / len(ALL_SUBJECTIVE_FIELDS)
def add_manual_results(
model: str,
revision: str,
bleu: float,
readability: int,
relevance: int,
explanation_clarity: int,
problem_identification: int,
actionability: int,
completeness: int,
specificity: int,
contextual_adequacy: int,
consistency: int,
brevity: int,
pass_at_1: float,
pass_at_5: float,
pass_at_10: float,
):
"""Directly submit evaluation metrics for a model and push them to the results dataset."""
# Basic validation
if model == "":
return styled_error("Please specify a model name.")
if revision == "":
revision = "main"
if pass_at_5 < pass_at_1:
return styled_error("pass@5 must be greater or equal to pass@1")
if pass_at_10 < pass_at_5:
return styled_error("pass@10 must be greater or equal to pass@5")
# Prepare dictionary in the same format used by read_evals.py
payload_dict = {
"model": model,
"revision": revision,
"bleu": bleu,
"readability": readability,
"relevance": relevance,
"explanation_clarity": explanation_clarity,
"problem_identification": problem_identification,
"actionability": actionability,
"completeness": completeness,
"specificity": specificity,
"contextual_adequacy": contextual_adequacy,
"consistency": consistency,
"brevity": brevity,
"pass_at_1": pass_at_1,
"pass_at_5": pass_at_5,
"pass_at_10": pass_at_10,
}
multimetric = _compute_multimetric(payload_dict)
# Compose final results file (same structure as api_submit_results)
result_json = {
"config": {
"model_dtype": "unknown",
"model_name": model,
"model_sha": revision,
},
"results": {
"bleu": {"score": bleu},
"multimetric": {"score": multimetric},
"pass_at_1": {"score": pass_at_1},
"pass_at_5": {"score": pass_at_5},
"pass_at_10": {"score": pass_at_10},
},
}
# Add subjective metrics
for field in ALL_SUBJECTIVE_FIELDS:
result_json["results"][field] = {"score": payload_dict[field]}
# Write file locally then upload
try:
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
except Exception:
pass
from datetime import datetime, timezone
import uuid
ts = datetime.now(timezone.utc).strftime("%Y%m%dT%H%M%SZ")
unique_id = uuid.uuid4().hex[:8]
filename = f"results_{model.replace('/', '_')}_{ts}_{unique_id}.json"
local_path = os.path.join(EVAL_RESULTS_PATH, filename)
try:
with open(local_path, "w") as fp:
json.dump(result_json, fp)
API.upload_file(
path_or_fileobj=local_path,
path_in_repo=filename,
repo_id=RESULTS_REPO,
repo_type="dataset",
commit_message=f"Add manual results for {model}",
)
except Exception as e:
return styled_error(f"Failed to upload results: {e}")
finally:
if os.path.exists(local_path):
os.remove(local_path)
return styled_message("Metrics successfully submitted! The leaderboard will refresh shortly.")
|