File size: 9,663 Bytes
2017254
 
 
2812333
ef635c1
2017254
4ae71b6
2017254
 
 
 
2812333
 
 
 
 
 
 
 
 
 
 
 
 
 
2017254
 
ea6e048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017254
 
 
 
 
 
 
 
 
 
4ae71b6
2017254
 
 
 
 
 
 
 
 
527d3c4
2017254
527d3c4
2812333
 
527d3c4
 
 
 
 
 
 
2017254
 
 
 
527d3c4
 
 
 
 
 
 
 
2017254
527d3c4
2017254
2812333
527d3c4
2812333
 
c762a51
 
2017254
ffff7f4
 
 
 
 
 
 
 
 
9d40219
 
 
 
 
2812333
527d3c4
2812333
 
9d40219
 
 
 
 
 
 
 
ffff7f4
 
 
 
 
 
 
 
 
 
 
 
 
2017254
 
 
 
 
2812333
2017254
 
 
 
 
ea6e048
 
 
 
 
 
 
 
 
 
2017254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2812333
2017254
2812333
 
2017254
 
 
 
 
2812333
2017254
 
 
d369cff
 
2017254
ea6e048
2812333
 
 
 
 
 
ea6e048
2017254
9d40219
ea6e048
9d40219
 
 
 
 
 
 
 
ef635c1
 
 
2017254
 
 
 
 
 
 
 
 
 
ea6e048
2017254
ea6e048
 
 
 
 
 
 
 
 
 
2017254
 
 
 
 
 
 
2812333
2017254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2812333
5cfc290
2017254
 
5cfc290
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import json
from pathlib import Path
from typing import List, Dict
import os

import gradio as gr
from pydantic import BaseModel, Field, field_validator

# --------------- Configuration ---------------
LEADERBOARD_PATH = Path("leaderboard_data.json")

# Initialize with default data
DEFAULT_DATA = [{
    "model_name": "example/model",
    "bleu": 0.5,
    "llm_pass_1": 0.5,
    "llm_pass_5": 0.5,
    "llm_pass_10": 0.5,
    "metrics": {
        "readability": 5, "relevance": 5, "explanation_clarity": 5,
        "problem_identification": 5, "actionability": 5, "completeness": 5,
        "specificity": 5, "contextual_adequacy": 5, "consistency": 5, "brevity": 5
    }
}]

# --------------- Data models ---------------
class Metrics(BaseModel):
    readability: int
    relevance: int
    explanation_clarity: int = Field(alias="explanation_clarity")
    problem_identification: int
    actionability: int
    completeness: int
    specificity: int
    contextual_adequacy: int
    consistency: int
    brevity: int

    @field_validator("readability", "relevance", "explanation_clarity", "problem_identification", "actionability", "completeness", "specificity", "contextual_adequacy", "consistency", "brevity")
    def metric_range(cls, v: int):
        if not 0 <= v <= 10:
            raise ValueError("Multi-metrics should be between 0 and 10")
        return v


class LeaderboardEntry(BaseModel):
    model_name: str
    bleu: float
    llm_pass_1: float
    llm_pass_5: float
    llm_pass_10: float
    metrics: Metrics

    @field_validator("bleu", "llm_pass_1", "llm_pass_5", "llm_pass_10")
    def score_range(cls, v: float):
        if not 0.0 <= v <= 1.0:
            raise ValueError("Scores should be between 0 and 1")
        return v


# --------------- Persistence helpers ---------------

def _load_leaderboard() -> List[Dict]:
    """Load leaderboard data with persistent storage support."""
    if not LEADERBOARD_PATH.exists():
        # Create default example data
        _save_leaderboard(DEFAULT_DATA)
        return DEFAULT_DATA
    
    try:
        with LEADERBOARD_PATH.open("r", encoding="utf-8") as f:
            data = json.load(f)
            return data.get("leaderboard", [])
    except Exception as e:
        print(f"Error loading leaderboard: {e}")
        return []


def _save_leaderboard(data: List[Dict]):
    """Save leaderboard data to persistent storage."""
    try:
        to_store = {"leaderboard": data}
        with LEADERBOARD_PATH.open("w", encoding="utf-8") as f:
            json.dump(to_store, f, indent=2)
    except Exception as e:
        print(f"Error saving leaderboard: {e}")


# --------------- Table data functions ---------------

def _table_data(data: List[Dict] = None) -> List[List]:
    """Get main metrics table data."""
    if data is None:
        data = _load_leaderboard()
    if not data:
        return []
    data.sort(key=lambda x: x["llm_pass_1"], reverse=True)
    
    table_rows = []
    for entry in data:
        row = [
            entry["model_name"],
            entry["bleu"],
            entry["llm_pass_1"],
            entry["llm_pass_5"],
            entry["llm_pass_10"],
        ]
        table_rows.append(row)
    return table_rows


def _multimetric_table_data(data: List[Dict] = None) -> List[List]:
    """Get multi-metric table data."""
    if data is None:
        data = _load_leaderboard()
    if not data:
        return []
    data.sort(key=lambda x: x["llm_pass_1"], reverse=True)
    
    table_rows = []
    for entry in data:
        row = [
            entry["model_name"],
            entry["metrics"]["readability"],
            entry["metrics"]["relevance"],
            entry["metrics"]["explanation_clarity"],
            entry["metrics"]["problem_identification"],
            entry["metrics"]["actionability"],
            entry["metrics"]["completeness"],
            entry["metrics"]["specificity"],
            entry["metrics"]["contextual_adequacy"],
            entry["metrics"]["consistency"],
            entry["metrics"]["brevity"],
        ]
        table_rows.append(row)
    return table_rows


# --------------- Gradio callbacks ---------------

def submit_model(
    current_data: List[Dict],
    model_name: str,
    bleu: float,
    llm_pass_1: float,
    llm_pass_5: float,
    llm_pass_10: float,
    readability: int,
    relevance: int,
    explanation_clarity: int,
    problem_identification: int,
    actionability: int,
    completeness: int,
    specificity: int,
    contextual_adequacy: int,
    consistency: int,
    brevity: int,
):
    """Validate and append a new model entry to the leaderboard."""
    try:
        entry = LeaderboardEntry(
            model_name=model_name.strip(),
            bleu=bleu,
            llm_pass_1=llm_pass_1,
            llm_pass_5=llm_pass_5,
            llm_pass_10=llm_pass_10,
            metrics={
                "readability": readability,
                "relevance": relevance,
                "explanation_clarity": explanation_clarity,
                "problem_identification": problem_identification,
                "actionability": actionability,
                "completeness": completeness,
                "specificity": specificity,
                "contextual_adequacy": contextual_adequacy,
                "consistency": consistency,
                "brevity": brevity,
            },
        )
    except Exception as e:
        return current_data, _table_data(current_data), _multimetric_table_data(current_data), f"❌ Submission failed: {e}"

    # Use current data from state
    data = current_data.copy() if current_data else []
    # Replace existing model entry if any
    data = [d for d in data if d["model_name"] != entry.model_name]
    data.append(entry.dict())
    _save_leaderboard(data)

    return data, _table_data(data), _multimetric_table_data(data), "βœ… Submission recorded!"


# --------------- Interface ---------------
with gr.Blocks(title="CodeReview Leaderboard") as demo:
    gr.Markdown("""# πŸ† CodeReview Leaderboard\nSubmit your model results below. Leaderboard is sorted by **Pass@1**. """)

    # Initialize table data
    initial_leaderboard_data = _load_leaderboard()
    initial_data = _table_data(initial_leaderboard_data)
    initial_multimetric_data = _multimetric_table_data(initial_leaderboard_data)
    
    # State to store leaderboard data
    leaderboard_state = gr.State(value=initial_leaderboard_data)
    
    leaderboard_df = gr.Dataframe(
        headers=["Model", "BLEU", "Pass@1", "Pass@5", "Pass@10"],
        value=initial_data,
        label="Main Metrics Leaderboard",
        interactive=False,
    )

    multimetric_df = gr.Dataframe(
        headers=["Model", "Readability", "Relevance", "Explanation Clarity", "Problem Identification", "Actionability", "Completeness", "Specificity", "Contextual Adequacy", "Consistency", "Brevity"],
        value=initial_multimetric_data,
        label="Multi-Metric Scores",
        interactive=False,
    )

    gr.Markdown("## πŸ”„ Submit new model results")

    with gr.Accordion("Submission form", open=False):
        with gr.Row():
            model_name_inp = gr.Text(label="Model name (org/model)", value="")
            bleu_inp = gr.Number(label="BLEU", value=0.0, minimum=0.0, maximum=1.0)
            pass1_inp = gr.Number(label="Pass@1", value=0.0, minimum=0.0, maximum=1.0)
            pass5_inp = gr.Number(label="Pass@5", value=0.0, minimum=0.0, maximum=1.0)
            pass10_inp = gr.Number(label="Pass@10", value=0.0, minimum=0.0, maximum=1.0)

        gr.Markdown("### Multi-metric subjective scores (0 – 10)")
        with gr.Row():
            readability_inp = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Readability")
            relevance_inp = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Relevance")
            explanation_inp = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Explanation Clarity")
            problem_inp = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Problem Identification")
            actionability_inp = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Actionability")
            completeness_inp = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Completeness")
            specificity_inp = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Specificity")
            contextual_inp = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Contextual Adequacy")
            consistency_inp = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Consistency")
            brevity_inp = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Brevity")

        submit_btn = gr.Button("Submit")
        status_markdown = gr.Markdown("")

        submit_btn.click(
            fn=submit_model,
            inputs=[
                leaderboard_state,
                model_name_inp,
                bleu_inp,
                pass1_inp,
                pass5_inp,
                pass10_inp,
                readability_inp,
                relevance_inp,
                explanation_inp,
                problem_inp,
                actionability_inp,
                completeness_inp,
                specificity_inp,
                contextual_inp,
                consistency_inp,
                brevity_inp,
            ],
            outputs=[leaderboard_state, leaderboard_df, multimetric_df, status_markdown],
            api_name="submit_model",
        )

# ----------------- Launch -----------------

if __name__ == "__main__":
    demo.queue().launch()

# For HF Spaces runtime (gradio SDK) expose `demo`
app = demo