Spaces:
Sleeping
Sleeping
| import torch | |
| from transformers import DetrImageProcessor, DetrForObjectDetection | |
| from PIL import Image | |
| import gradio as gr | |
| import matplotlib.pyplot as plt | |
| import matplotlib.patches as patches | |
| import io | |
| # Load the processor and model | |
| processor = DetrImageProcessor.from_pretrained('facebook/detr-resnet-101') | |
| model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-101') | |
| def object_detection(image): | |
| # Preprocess the image | |
| inputs = processor(images=image, return_tensors="pt") | |
| # Perform object detection | |
| outputs = model(**inputs) | |
| # Extract bounding boxes and labels | |
| target_sizes = torch.tensor([image.size[::-1]]) | |
| results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
| # Plot the image with bounding boxes | |
| plt.figure(figsize=(16, 10)) | |
| plt.imshow(image) | |
| ax = plt.gca() | |
| for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
| box = [round(i, 2) for i in box.tolist()] | |
| xmin, ymin, xmax, ymax = box | |
| width, height = xmax - xmin, ymax - ymin | |
| ax.add_patch(plt.Rectangle((xmin, ymin), width, height, fill=False, color='red', linewidth=3)) | |
| text = f'{model.config.id2label[label.item()]}: {round(score.item(), 3)}' | |
| ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5)) | |
| plt.axis('off') | |
| # Save the plot to an image buffer | |
| buf = io.BytesIO() | |
| plt.savefig(buf, format='png') | |
| buf.seek(0) | |
| plt.close() | |
| # Convert buffer to an Image object | |
| result_image = Image.open(buf) | |
| return result_image | |
| # Define the Gradio interface | |
| demo = gr.Interface( | |
| fn=object_detection, | |
| inputs=gr.Image(type="pil", label="Upload an Image"), | |
| outputs=gr.Image(type="pil", label="Detected Objects"), | |
| title="Object Detection with DETR (ResNet-101)", | |
| description="Upload an image and get object detection results using the DETR model with a ResNet-101 backbone.", | |
| ) | |
| # Launch the Gradio interface | |
| if __name__ == "__main__": | |
| demo.launch() |