File size: 7,728 Bytes
f96995c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from pathlib import Path
import random
import time
from omegaconf import DictConfig, OmegaConf

import numpy as np
import torch
import os
import glob
from PIL import Image
import argparse
import yaml
import scipy
import math
import lpips
import cv2
from skimage.metrics import structural_similarity as ssim_sk
import json

from pgnd.utils import get_root
from pgnd.ffmpeg import make_video
from train.metric import mse_dist, chamfer_dist, em_distance, compute_j, compute_f, compute_lpips, calc_psnr, calc_ssim, inverse_preprocess

root: Path = get_root(__file__)

@torch.no_grad()
def do_metric(
    cfg,
    log_root,
    iteration,
    episode_names,
    downsample_indices,
    eval_dirname,
    camera_id=1,
    eval_postfix='',
    dataset_name='',
    use_gs=True,
    eval_camera_num=0,
):

    state_dir = log_root / cfg.train.name / eval_dirname / dataset_name / f'{iteration:06d}' / 'state'

    if use_gs:
        pv_gs_dir = log_root / cfg.train.name / eval_dirname / dataset_name / f'{iteration:06d}' / 'pv_gs'
        mask_dir = log_root / cfg.train.name / eval_dirname / dataset_name / f'{iteration:06d}' / 'mask'
        
        pv_gs_gt_dir = log_root / cfg.train.name / eval_dirname / dataset_name / f'{iteration:06d}' / 'pv_gs_gt'
        mask_gt_dir = log_root / cfg.train.name / eval_dirname / dataset_name / f'{iteration:06d}' / 'mask_gt'

    save_dir = log_root / cfg.train.name / eval_dirname / dataset_name / f'{iteration:06d}' / 'metric'
    save_dir.mkdir(parents=True, exist_ok=True)

    loss_fn_vgg = lpips.LPIPS(net='alex')

    metric_list_list = []

    for episode_idx, episode in enumerate(episode_names):
        state_dir_episode = state_dir / episode
        save_dir_episode = save_dir / episode
        save_dir_episode.mkdir(parents=True, exist_ok=True)

        if use_gs:
            pv_gs_dir_episode = pv_gs_dir / episode
            mask_dir_episode = mask_dir / episode
            pv_gs_gt_dir_episode = pv_gs_gt_dir / episode
            mask_gt_dir_episode = mask_gt_dir / episode
            pv_gs_gt_dir_episode.mkdir(parents=True, exist_ok=True)
            mask_gt_dir_episode.mkdir(parents=True, exist_ok=True)

        # save downsample_indices
        downsample_indices = downsample_indices[0].cuda()
        np.save(save_dir_episode / 'downsample_indices.npy', downsample_indices.cpu().numpy())

        source_dataset_root = log_root / str(cfg.train.source_dataset_name)

        meta = np.loadtxt(log_root / str(cfg.train.source_dataset_name) / episode / 'meta.txt')
        with open(log_root / str(cfg.train.source_dataset_name) / 'metadata.json') as f:
            datadir_list = json.load(f)
        episode_real_name = int(episode.split('_')[1])
        datadir = datadir_list[episode_real_name]
        source_data_dir = datadir['path']
        source_episode_id = int(meta[0])
        source_frame_start = int(meta[1])
        source_frame_end = int(meta[2])

        skip_frame = cfg.train.dataset_load_skip_frame * cfg.train.dataset_skip_frame
        frame_ids = np.arange(source_frame_start + (cfg.sim.n_history + 1) * skip_frame, source_frame_end, skip_frame)
        n_frames = len(frame_ids)

        # load xyz_orig for inverse preprocess
        xyz_orig = np.load(source_dataset_root / episode / 'traj.npz')['xyz']
        xyz_orig = torch.tensor(xyz_orig, dtype=torch.float32)

        traj = []
        if use_gs:
            imgs = []
            masks = []
            gt_imgs = []
            gt_masks = []

        data_init = torch.load(log_root / cfg.train.dataset_name / 'state' / episode / f'{0:04d}.pt')

        for frame_id in range(n_frames):
            frame_id_gt = frame_ids[frame_id]

            state = torch.load(state_dir_episode / f'{frame_id:04d}.pt')
            x = state['x'].cpu()
            traj.append(x)  # (n, 3)

            if use_gs:
                pv_gs = cv2.imread(pv_gs_dir_episode / f'{frame_id:04d}.png')
                pv_gs = cv2.cvtColor(pv_gs, cv2.COLOR_BGR2RGB)
                mask = cv2.imread(mask_dir_episode / f'{frame_id:04d}.png')
                mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)

                imgs.append(pv_gs)  # (H, W, 3)
                masks.append(mask)  # (H, W, 3)

                gt_mask = cv2.imread((log_root.parent.parent / source_data_dir).parent / f'episode_{source_episode_id:04d}' \
                        / f'camera_{camera_id}' / 'mask' / f'{int(frame_id_gt):06d}.png')
                gt_mask = cv2.cvtColor(gt_mask, cv2.COLOR_BGR2GRAY)
                gt_masks.append(gt_mask)

                gt_img = cv2.imread((log_root.parent.parent / source_data_dir).parent / f'episode_{source_episode_id:04d}' \
                        / f'camera_{camera_id}' / 'rgb' / f'{int(frame_id_gt):06d}.jpg')
                gt_img = cv2.cvtColor(gt_img, cv2.COLOR_BGR2RGB)
                gt_img = gt_img * (gt_mask > 0)[..., None]
                gt_imgs.append(gt_img)

                # save
                pv_gs_gt = Image.fromarray(gt_img)
                pv_gs_gt.save(pv_gs_gt_dir_episode / f'{frame_id:04d}.png')
                mask_gt = Image.fromarray(gt_mask)
                mask_gt.save(mask_gt_dir_episode / f'{frame_id:04d}.png')
        
        if use_gs:
            frame_rate = 10
            video_name = pv_gs_gt_dir / f'{episode}.mp4'
            make_video(pv_gs_gt_dir_episode, video_name, '%04d.png', frame_rate)
        
        traj = torch.stack(traj, dim=0)
        traj, xyz_orig = inverse_preprocess(cfg, traj, xyz_orig)
        gt_traj = xyz_orig[(cfg.sim.n_history + 1) * skip_frame::skip_frame]

        if use_gs:
            assert len(imgs) == len(gt_imgs) == len(gt_masks) == len(traj) == len(gt_traj)
        else:
            assert len(traj) == len(gt_traj)

        metric_list = []
        for i in range(len(traj)):
            xyz = traj[i].cuda()
            xyz_gt = gt_traj[i].cuda()

            if use_gs:
                im = imgs[i]
                mask = masks[i]
                im_gt = gt_imgs[i]
                mask_gt = gt_masks[i]

                mask = mask > 0
                mask_gt = mask_gt > 0

            xyz_gt_downsampled = xyz_gt[downsample_indices]

            mse = mse_dist(xyz, xyz_gt_downsampled)
            chamfer = chamfer_dist(xyz, xyz_gt)
            emd = em_distance(xyz, xyz_gt)

            if use_gs:
                jscore = compute_j(mask, mask_gt)
                fscore = compute_f(mask, mask_gt)
                jfscore = (jscore + fscore) / 2

                perception = compute_lpips(loss_fn_vgg, im, im_gt)
                psnr = calc_psnr(im, im_gt, mask_gt)
                ssim = calc_ssim(im, im_gt, mask_gt)
                iou = np.sum(mask & mask_gt) / np.sum(mask | mask_gt)

                metric_list.append([mse, chamfer, emd, jscore, fscore, jfscore, perception, psnr, ssim, iou])
                print(f'{episode}, image: {i}, camera: {camera_id}', end=' ')
                print(f'3D MSE: {mse:.4f}, 3D CD: {chamfer:.4f}, 3D EMD: {emd:.4f}', end=' ')
                print(f'J-Score: {jscore:.4f}, F-Score: {fscore:.4f}, JF-Score: {jfscore:.4f}', end=' ')
                print(f'perception: {perception:.4f}, PSNR: {psnr:.4f}, SSIM: {ssim:.4f}, IoU: {iou:.4f}')

            else:
                metric_list.append([mse, chamfer, emd])
                print(f'{episode}, image: {i}', end=' ')
                print(f'3D MSE: {mse:.4f}, 3D CD: {chamfer:.4f}, 3D EMD: {emd:.4f}')

        # save metrics
        metric_list = np.array(metric_list)
        np.savetxt(save_dir_episode / f'metric.txt', metric_list, fmt='%.6f')

        metric_list_list.append(metric_list)

    metric_list_list = np.array(metric_list_list)
    return metric_list_list