File size: 22,435 Bytes
f96995c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
from pathlib import Path
import random
from tqdm import tqdm, trange
import hydra
from omegaconf import DictConfig, OmegaConf
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn
import math
import os
import cv2
from sklearn.neighbors import NearestNeighbors
import json
import kornia

from pgnd.utils import get_root, mkdir
from pgnd.ffmpeg import make_video

from real_world.utils.render_utils import interpolate_motions
from real_world.gs.helpers import setup_camera
from real_world.gs.convert import save_to_splat, read_splat

from diff_gaussian_rasterization import GaussianRasterizer
from diff_gaussian_rasterization import GaussianRasterizationSettings as Camera

root: Path = get_root(__file__)


def Rt_to_w2c(R, t):
    c2w = np.concatenate([np.concatenate([R, t.reshape(3, 1)], axis=1), np.array([[0, 0, 0, 1]])], axis=0)
    w2c = np.linalg.inv(c2w)
    return w2c


class GSRenderer:
    def __init__(self, cfg, device='cuda'):
        self.cfg = cfg
        self.device = device
        self.k_rel = 16  # knn for relations
        self.k_wgt = 16  # knn for weights
        self.clear()
    
    def clear(self, clear_params=True):
        self.metadata = None
        self.config = None
        if clear_params:
            self.params = None
    
    def load_params(self, params_path, remove_low_opa=True, remove_black=False):
        pts, colors, scales, quats, opacities = read_splat(params_path)
        
        if remove_low_opa:
            low_opa_idx = opacities[:, 0] < 0.1
            pts = pts[~low_opa_idx]
            colors = colors[~low_opa_idx]
            quats = quats[~low_opa_idx]
            opacities = opacities[~low_opa_idx]
            scales = scales[~low_opa_idx]

        if remove_black:
            low_color_idx = colors.sum(axis=-1) < 0.5
            pts = pts[~low_color_idx]
            colors = colors[~low_color_idx]
            quats = quats[~low_color_idx]
            opacities = opacities[~low_color_idx]
            scales = scales[~low_color_idx]
        
        self.params = {
            'means3D': torch.from_numpy(pts).to(self.device),
            'rgb_colors': torch.from_numpy(colors).to(self.device),
            'log_scales': torch.log(torch.from_numpy(scales).to(self.device)),
            'unnorm_rotations': torch.from_numpy(quats).to(self.device),
            'logit_opacities': torch.logit(torch.from_numpy(opacities).to(self.device))
        }

        gripper_splat = root / 'log/gs/ckpts/gripper.splat'  # gripper_new.splat
        table_splat = root / 'log/gs/ckpts/table.splat'

        self.gripper_params = read_splat(gripper_splat)
        self.table_params = read_splat(table_splat)

    def set_camera(self, w, h, intr, w2c=None, R=None, t=None, near=0.01, far=100.0):
        if w2c is None:
            assert R is not None and t is not None
            w2c = Rt_to_w2c(R, t)
        self.metadata = {
            'w': w,
            'h': h,
            'k': intr,
            'w2c': w2c,
        }
        self.config = {'near': near, 'far': far}

    @torch.no_grad
    def render(self, render_data, cam_id, bg=[0, 0, 0]):
        render_data = {k: v.to(self.device) for k, v in render_data.items()}
        w, h = self.metadata['w'], self.metadata['h']
        k, w2c = self.metadata['k'], self.metadata['w2c']
        cam = setup_camera(w, h, k, w2c, self.config['near'], self.config['far'], bg)
        im, _, depth, = GaussianRasterizer(raster_settings=cam)(**render_data)
        return im, depth
    
    def knn_relations(self, bones):
        k = self.k_rel
        knn = NearestNeighbors(n_neighbors=k+1, algorithm='kd_tree').fit(bones.detach().cpu().numpy())
        _, indices = knn.kneighbors(bones.detach().cpu().numpy())  # (N, k)
        indices = indices[:, 1:]  # exclude self
        return indices
    
    def knn_weights(self, bones, pts):
        k = self.k_wgt
        knn = NearestNeighbors(n_neighbors=k, algorithm='kd_tree').fit(bones.detach().cpu().numpy())
        _, indices = knn.kneighbors(pts.detach().cpu().numpy())
        bones_selected = bones[indices]  # (N, k, 3)
        dist = torch.norm(bones_selected - pts[:, None], dim=-1)  # (N, k)
        weights = 1 / (dist + 1e-6)
        weights = weights / weights.sum(dim=-1, keepdim=True)  # (N, k)
        weights_all = torch.zeros((pts.shape[0], bones.shape[0]), device=pts.device)
        weights_all[torch.arange(pts.shape[0])[:, None], indices] = weights
        return weights_all

    def rollout_and_render(self, pts_list, grippers=[], with_bg=False):
        assert self.params is not None

        pts_list = pts_list.to(self.device)

        if grippers != []:
            n_grippers = grippers.shape[1]
            grippers = grippers.to(self.device)
            gripper_center = grippers[:, :, :3]
            gripper_quat = grippers[:, :, 6:10]
            gripper_radius = grippers[:, :, 13]

        xyz_0 = self.params['means3D']
        rgb_0 = self.params['rgb_colors']
        quat_0 = torch.nn.functional.normalize(self.params['unnorm_rotations'])
        opa_0 = torch.sigmoid(self.params['logit_opacities'])
        scales_0 = torch.exp(self.params['log_scales'])

        pts_prev = pts_list[0]

        xyz_list = [xyz_0]
        rgb_list = [rgb_0]
        quat_list = [quat_0]
        opa_list = [opa_0]
        scales_list = [scales_0]
        for i in range(1, len(pts_list)):
            pts = pts_list[i]

            xyz, quat, _ = interpolate_motions(
                bones=pts_prev,
                motions=pts - pts_prev,
                relations=self.knn_relations(pts_prev),
                weights=self.knn_weights(pts_prev, xyz_list[-1]),
                xyz=xyz_list[-1],
                quat=quat_list[-1],
                step=f'{i-1}->{i}'
            )

            pts_prev = pts
            xyz_list.append(xyz)
            quat_list.append(quat)
            rgb_list.append(rgb_list[-1])
            opa_list.append(opa_list[-1])
            scales_list.append(scales_list[-1])
        
        n_steps = len(xyz_list)
        xyz = torch.stack(xyz_list, dim=0).to(torch.float32)
        rgb = torch.stack(rgb_list, dim=0).to(torch.float32)
        quat = torch.stack(quat_list, dim=0).to(torch.float32)
        opa = torch.stack(opa_list, dim=0).to(torch.float32)
        scales = torch.stack(scales_list, dim=0).to(torch.float32)

        # interpolate smoothly
        change_points = (xyz - torch.concatenate([xyz[0:1], xyz[:-1]], dim=0)).norm(dim=-1).sum(dim=-1).nonzero().squeeze(1)
        change_points = torch.cat([torch.tensor([0]).to(change_points.device), change_points])
        for i in range(1, len(change_points)):
            start = change_points[i - 1]
            end = change_points[i]
            if end - start < 2:  # gap is 0 or 1
                continue
            xyz[start:end] = torch.lerp(xyz[start][None], xyz[end][None], torch.linspace(0, 1, end - start + 1).to(xyz.device)[:, None, None])[:-1]
            rgb[start:end] = torch.lerp(rgb[start][None], rgb[end][None], torch.linspace(0, 1, end - start + 1).to(rgb.device)[:, None, None])[:-1]
            quat[start:end] = torch.lerp(quat[start][None], quat[end][None], torch.linspace(0, 1, end - start + 1).to(quat.device)[:, None, None])[:-1]
            opa[start:end] = torch.lerp(opa[start][None], opa[end][None], torch.linspace(0, 1, end - start + 1).to(opa.device)[:, None, None])[:-1]

        quat = torch.nn.functional.normalize(quat, dim=-1)
        mean_xyz = xyz.mean((0, 1))

        if with_bg:
            ## add table and gripper
            # add table
            t_pts, t_colors, t_scales, t_quats, t_opacities = self.table_params
            t_pts = torch.tensor(t_pts).to(xyz.device).to(xyz.dtype)
            t_colors = torch.tensor(t_colors).to(rgb.device).to(rgb.dtype)
            t_scales = torch.tensor(t_scales).to(scales.device).to(scales.dtype)
            t_quats = torch.tensor(t_quats).to(quat.device).to(quat.dtype)
            t_opacities = torch.tensor(t_opacities).to(opa.device).to(opa.dtype)

            # add table pos
            t_pts = t_pts + torch.tensor([mean_xyz[0].item() - 0.36, mean_xyz[1].item() - 0.10, 0.02]).to(t_pts.device).to(t_pts.dtype)

            # add gripper
            g_pts, g_colors, g_scales, g_quats, g_opacities = self.gripper_params
            g_pts = torch.tensor(g_pts).to(xyz.device).to(xyz.dtype)
            g_colors = torch.tensor(g_colors).to(rgb.device).to(rgb.dtype)
            g_scales = torch.tensor(g_scales).to(scales.device).to(scales.dtype)
            g_quats = torch.tensor(g_quats).to(quat.device).to(quat.dtype)
            g_opacities = torch.tensor(g_opacities).to(opa.device).to(opa.dtype)

            g_pts_tip = g_pts[(g_pts[:, 2] > -0.10) & (g_pts[:, 2] < -0.02)]
            g_pts_tip_mean_xy = g_pts_tip[:, :2].mean(dim=0)
            g_pts_translation = torch.tensor([-g_pts_tip_mean_xy[0] - 0.02, -g_pts_tip_mean_xy[1] + 0.0, 0.07]).to(g_pts.device).to(g_pts.dtype)
            g_pts = g_pts + g_pts_translation

            # rotate gripper
            gripper_mat = kornia.geometry.conversions.quaternion_to_rotation_matrix(gripper_quat)  # (num_steps, num_grippers, 3, 3)
            g_pts = g_pts @ gripper_mat  # (num_steps, num_grippers, num_points, 3)

            g_quats_mat = kornia.geometry.conversions.quaternion_to_rotation_matrix(g_quats)  # (num_grippers, 3, 3)
            g_quats_mat = g_quats_mat[None, None].repeat(n_steps, n_grippers, 1, 1, 1)  # (num_steps, num_grippers, num_points, 3, 3)
            g_quats_mat = gripper_mat.permute(0, 1, 3, 2)[:, :, None] @ g_quats_mat  # (num_steps, num_grippers, num_points, 3, 3)
            g_quats = kornia.geometry.conversions.rotation_matrix_to_quaternion(g_quats_mat)  # (num_steps, num_grippers, num_points, 4)

            # add gripper pos
            g_pts = g_pts + gripper_center[:, :, None]

            # reshape
            g_pts = g_pts.reshape(n_steps, -1, 3)
            g_colors = g_colors.repeat(n_grippers, 1)
            g_quats = g_quats.reshape(n_steps, -1, 4)
            g_opacities = g_opacities.repeat(n_grippers, 1)
            g_scales = g_scales.repeat(n_grippers, 1)

            # merge
            bg_xyz = torch.cat([xyz, t_pts[None].repeat(n_steps, 1, 1), g_pts], dim=1)
            bg_rgb = torch.cat([rgb, t_colors[None].repeat(n_steps, 1, 1), g_colors[None].repeat(n_steps, 1, 1)], dim=1)
            bg_quat = torch.cat([quat, t_quats[None].repeat(n_steps, 1, 1), g_quats], dim=1)
            bg_opa = torch.cat([opa, t_opacities[None].repeat(n_steps, 1, 1), g_opacities[None].repeat(n_steps, 1, 1)], dim=1)
            bg_scales = torch.cat([scales, t_scales[None].repeat(n_steps, 1, 1), g_scales[None].repeat(n_steps, 1, 1)], dim=1)

            bg_quat = torch.nn.functional.normalize(bg_quat, dim=-1)

        rendervar_list = []
        rendervar_list_bg = []
        for t in range(n_steps):
            rendervar = {
                'means3D': xyz[t],  
                'colors_precomp': rgb[t],
                'rotations': quat[t],
                'opacities': opa[t],
                'scales': scales[t],
                'means2D': torch.zeros_like(xyz[t]),
            }
            rendervar_list.append(rendervar)

            if with_bg:
                rendervar_bg = {
                    'means3D': bg_xyz[t],  
                    'colors_precomp': bg_rgb[t],
                    'rotations': bg_quat[t],
                    'opacities': bg_opa[t],
                    'scales': bg_scales[t],
                    'means2D': torch.zeros_like(bg_xyz[t]),
                }
                rendervar_list_bg.append(rendervar_bg)

        return rendervar_list, rendervar_list_bg


def inverse_preprocess(cfg, p_x, grippers, source_data_root_episode):
    dx = cfg.sim.num_grids_flexible[-1]

    xyz_orig = np.load(source_data_root_episode / 'traj.npz')['xyz']
    xyz = torch.tensor(xyz_orig, dtype=torch.float32)
    
    R = torch.tensor(
        [[1, 0, 0],
        [0, 0, -1],
        [0, 1, 0]]
    ).to(xyz.device).to(xyz.dtype)
    xyz = torch.einsum('nij,jk->nik', xyz, R.T)

    scale = cfg.sim.preprocess_scale
    xyz = xyz * scale
    
    if cfg.sim.preprocess_with_table:
        global_translation = torch.tensor([
            0.5 - (xyz[:, :, 0].max() + xyz[:, :, 0].min()) / 2,
            dx * (cfg.model.clip_bound + 0.5) + 1e-5 - xyz[:, :, 1].min(),
            0.5 - (xyz[:, :, 2].max() + xyz[:, :, 2].min()) / 2,
        ], dtype=xyz.dtype)
    else:
        global_translation = torch.tensor([
            0.5 - (xyz[:, :, 0].max() + xyz[:, :, 0].min()) / 2,
            0.5 - (xyz[:, :, 1].max() + xyz[:, :, 1].min()) / 2,
            0.5 - (xyz[:, :, 2].max() + xyz[:, :, 2].min()) / 2,
        ], dtype=xyz.dtype)

    p_x -= global_translation
    grippers[:, :, :3] -= global_translation

    p_x = p_x / scale
    grippers[:, :, :3] = grippers[:, :, :3] / scale

    p_x = torch.einsum('nij,jk->nik', p_x, torch.linalg.inv(R).T)
    grippers[:, :, :3] = torch.einsum('nmi,ik->nmk', grippers[:, :, :3], torch.linalg.inv(R).T)

    gripper_quat = grippers[:, :, 6:10]  # (n_steps, n_grippers, 4)
    gripper_rot = kornia.geometry.conversions.quaternion_to_rotation_matrix(gripper_quat)  # (n_steps, n_gripper, 3, 3)
    gripper_rot = R.T @ gripper_rot @ R
    gripper_quat = kornia.geometry.conversions.rotation_matrix_to_quaternion(gripper_rot)
    grippers[:, :, 6:10] = gripper_quat

    return p_x, grippers


def get_camera(cfg, log_root, source_data_dir, source_episode_id, frame_id=0, camera_id=1):
    h, w = 480, 848
    calibration_dir = (log_root.parent.parent / source_data_dir).parent / f'episode_{source_episode_id:04d}' / 'calibration'
    intr = np.load(calibration_dir / 'intrinsics.npy')
    rvec = np.load(calibration_dir / 'rvecs.npy')
    tvec = np.load(calibration_dir / 'tvecs.npy')
    R = [cv2.Rodrigues(rvec[i])[0] for i in range(rvec.shape[0])]
    T = [tvec[i, :, 0] for i in range(tvec.shape[0])]
    extrs = np.zeros((len(R), 4, 4)).astype(np.float32)
    for i in range(len(R)):
        extrs[i, :3, :3] = R[i]
        extrs[i, :3, 3] = T[i]
        extrs[i, 3, 3] = 1
    return {
        'w': w,
        'h': h,
        'intr': intr[camera_id],
        'w2c': extrs[camera_id],
    }


@torch.no_grad()
def render(
    cfg,
    log_root,
    iteration,
    episode_names,
    eval_dirname='eval',
    eval_postfix='',
    dataset_name='',
    camera_id=1,
    with_bg=False,
    with_mask=False,
    transparent=True,
    start_step=None,
    end_step=None,
):

    if dataset_name == '':
        eval_name = f'{cfg.train.name}/{eval_dirname}/{iteration:06d}'
    else:
        eval_name = f'{cfg.train.name}/{eval_dirname}/{dataset_name}/{iteration:06d}'
    render_type = 'pv_gs'
    render_type_gs = 'gs'

    exp_root: Path = log_root / eval_name
    state_root: Path = exp_root / 'state'
    image_root: Path = exp_root / render_type
    gs_root: Path = exp_root / render_type_gs
    mkdir(image_root, overwrite=cfg.overwrite, resume=cfg.resume)
    mkdir(gs_root, overwrite=cfg.overwrite, resume=cfg.resume)

    if with_mask:
        render_type_mask = 'mask'
        episode_mask_root = exp_root / render_type_mask
        mkdir(episode_mask_root, overwrite=cfg.overwrite, resume=cfg.resume)

    if with_bg:
        render_type_bg = 'pv_gs_bg'
        render_type_gs_bg = 'gs_bg'
        image_root_bg: Path = exp_root / render_type_bg
        gs_root_bg: Path = exp_root / render_type_gs_bg
        mkdir(image_root_bg, overwrite=cfg.overwrite, resume=cfg.resume)
        mkdir(gs_root_bg, overwrite=cfg.overwrite, resume=cfg.resume)

    video_path_list = []
    for episode_idx, episode in enumerate(episode_names):

        renderer = GSRenderer(cfg.render)

        meta = np.loadtxt(log_root / str(cfg.train.source_dataset_name) / episode / 'meta.txt')
        with open(log_root / str(cfg.train.source_dataset_name) / 'metadata.json') as f:
            datadir_list = json.load(f)
        episode_real_name = int(episode.split('_')[1])
        datadir = datadir_list[episode_real_name]
        source_data_dir = datadir['path']
        source_episode_id = int(meta[0])
        source_frame_start = int(meta[1]) + int(cfg.sim.n_history) * int(cfg.train.dataset_load_skip_frame) * int(cfg.train.dataset_skip_frame)
        source_frame_end = int(meta[2])
        episode_gs_init_path = (log_root.parent.parent / source_data_dir).parent / f'episode_{source_episode_id:04d}' / 'gs' / f'{source_frame_start:06d}.splat'

        renderer.load_params(episode_gs_init_path)

        episode_state_root = state_root / episode
        episode_image_root = image_root / episode
        episode_gs_root = gs_root / episode
        mkdir(episode_image_root, overwrite=cfg.overwrite, resume=cfg.resume)
        mkdir(episode_gs_root, overwrite=cfg.overwrite, resume=cfg.resume)

        if with_mask:
            episode_mask_root = episode_mask_root / episode
            mkdir(episode_mask_root, overwrite=cfg.overwrite, resume=cfg.resume)

        if with_bg:
            episode_image_root_bg = image_root_bg / episode
            episode_gs_root_bg = gs_root_bg / episode
            mkdir(episode_image_root_bg, overwrite=cfg.overwrite, resume=cfg.resume)
            mkdir(episode_gs_root_bg, overwrite=cfg.overwrite, resume=cfg.resume)

        ckpt_paths = list(sorted(episode_state_root.glob('*.pt'), key=lambda x: int(x.stem)))

        p_x_list = []
        grippers_list = []
        for i, path in enumerate(ckpt_paths):
            if i % cfg.render.skip_frame != 0:
                continue

            ckpt = torch.load(path, map_location='cpu')
            p_x = ckpt['x']
            p_x_list.append(p_x)

            use_grippers = 'grippers' in ckpt
            grippers = None
            if use_grippers:
                grippers = ckpt['grippers']
            if grippers is not None:
                grippers_list.append(grippers)
        
        p_x_list = torch.stack(p_x_list, dim=0)
        grippers_list = torch.stack(grippers_list, dim=0) if grippers_list else []
        p_x_list, grippers_list = inverse_preprocess(cfg, p_x_list, grippers_list,
                source_data_root_episode=log_root / cfg.train.source_dataset_name / episode)

        rendervar_list, rendervar_list_bg = renderer.rollout_and_render(p_x_list, grippers_list, with_bg=with_bg)

        for i, path in enumerate(tqdm(ckpt_paths, desc=render_type)):
            rendervar = rendervar_list[i // cfg.render.skip_frame]
            renderer.set_camera(**get_camera(cfg, log_root, source_data_dir, source_episode_id, frame_id=i, camera_id=camera_id))
            im, _ = renderer.render(rendervar, 0)
            im = im.cpu().numpy().transpose(1, 2, 0)
            im = (im * 255).astype(np.uint8)
            im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)

            if transparent or with_mask:
                rendervar['colors_precomp'] = torch.ones_like(rendervar['colors_precomp'])
                mask, _ = renderer.render(rendervar, 0)
                mask = mask.cpu().numpy().transpose(1, 2, 0)

                if transparent:
                    im = cv2.cvtColor(im, cv2.COLOR_RGB2RGBA)
                    im[:, :, 3] = (mask * 255).mean(-1).astype(np.uint8)

                if with_mask:
                    thresh = 0.1
                    mask = (mask > thresh).astype(np.float32)
                    mask = (mask * 255).astype(np.uint8)
                    mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
                    save_path = str(episode_mask_root / f'{i // cfg.render.skip_frame:04d}.png')
                    cv2.imwrite(save_path, mask)

            save_path = str(episode_image_root / f'{i // cfg.render.skip_frame:04d}.png')
            cv2.imwrite(save_path, im)

            gs_save_path = str(episode_gs_root / f'{i // cfg.render.skip_frame:04d}.splat')
            save_to_splat(
                pts=rendervar['means3D'].cpu().numpy(),
                colors=rendervar['colors_precomp'].cpu().numpy(),
                scales=rendervar['scales'].cpu().numpy(),
                quats=rendervar['rotations'].cpu().numpy(),
                opacities=rendervar['opacities'].cpu().numpy(),
                output_file=gs_save_path,
                center=False,
                rotate=False,
            )

            if with_bg:
                rendervar_bg = rendervar_list_bg[i // cfg.render.skip_frame]
                renderer.set_camera(**get_camera(cfg, log_root, source_data_dir, source_episode_id, frame_id=i, camera_id=camera_id))
                im, _ = renderer.render(rendervar_bg, 0)
                im = im.cpu().numpy().transpose(1, 2, 0)
                im = (im * 255).astype(np.uint8)
                im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
                
                if transparent:
                    rendervar_bg['colors_precomp'] = torch.ones_like(rendervar_bg['colors_precomp'])
                    mask, _ = renderer.render(rendervar_bg, 0)
                    mask = mask.cpu().numpy().transpose(1, 2, 0)
                    im = cv2.cvtColor(im, cv2.COLOR_RGB2RGBA)
                    im[:, :, 3] = (mask * 255).mean(-1).astype(np.uint8)

                save_path = str(episode_image_root_bg / f'{i // cfg.render.skip_frame:04d}.png')
                cv2.imwrite(save_path, im)

                gs_save_path = str(episode_gs_root_bg / f'{i // cfg.render.skip_frame:04d}.splat')
                save_to_splat(
                    pts=rendervar_bg['means3D'].cpu().numpy(),
                    colors=rendervar_bg['colors_precomp'].cpu().numpy(),
                    scales=rendervar_bg['scales'].cpu().numpy(),
                    quats=rendervar_bg['rotations'].cpu().numpy(),
                    opacities=rendervar_bg['opacities'].cpu().numpy(),
                    output_file=gs_save_path,
                    center=False,
                    rotate=False,
                )

        make_video(episode_image_root, image_root / f'{episode}{eval_postfix}.mp4', '%04d.png', cfg.render.fps)
        video_path_list.append(image_root / f'{episode}{eval_postfix}.mp4')
    
        if with_bg:
            make_video(episode_image_root_bg, image_root_bg / f'{episode}{eval_postfix}.mp4', '%04d.png', cfg.render.fps)
    
    return video_path_list


@torch.no_grad()
def do_gs(*args, **kwargs):
    ret = render(*args, **kwargs)
    return ret