File size: 22,435 Bytes
f96995c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
from pathlib import Path
import random
from tqdm import tqdm, trange
import hydra
from omegaconf import DictConfig, OmegaConf
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn
import math
import os
import cv2
from sklearn.neighbors import NearestNeighbors
import json
import kornia
from pgnd.utils import get_root, mkdir
from pgnd.ffmpeg import make_video
from real_world.utils.render_utils import interpolate_motions
from real_world.gs.helpers import setup_camera
from real_world.gs.convert import save_to_splat, read_splat
from diff_gaussian_rasterization import GaussianRasterizer
from diff_gaussian_rasterization import GaussianRasterizationSettings as Camera
root: Path = get_root(__file__)
def Rt_to_w2c(R, t):
c2w = np.concatenate([np.concatenate([R, t.reshape(3, 1)], axis=1), np.array([[0, 0, 0, 1]])], axis=0)
w2c = np.linalg.inv(c2w)
return w2c
class GSRenderer:
def __init__(self, cfg, device='cuda'):
self.cfg = cfg
self.device = device
self.k_rel = 16 # knn for relations
self.k_wgt = 16 # knn for weights
self.clear()
def clear(self, clear_params=True):
self.metadata = None
self.config = None
if clear_params:
self.params = None
def load_params(self, params_path, remove_low_opa=True, remove_black=False):
pts, colors, scales, quats, opacities = read_splat(params_path)
if remove_low_opa:
low_opa_idx = opacities[:, 0] < 0.1
pts = pts[~low_opa_idx]
colors = colors[~low_opa_idx]
quats = quats[~low_opa_idx]
opacities = opacities[~low_opa_idx]
scales = scales[~low_opa_idx]
if remove_black:
low_color_idx = colors.sum(axis=-1) < 0.5
pts = pts[~low_color_idx]
colors = colors[~low_color_idx]
quats = quats[~low_color_idx]
opacities = opacities[~low_color_idx]
scales = scales[~low_color_idx]
self.params = {
'means3D': torch.from_numpy(pts).to(self.device),
'rgb_colors': torch.from_numpy(colors).to(self.device),
'log_scales': torch.log(torch.from_numpy(scales).to(self.device)),
'unnorm_rotations': torch.from_numpy(quats).to(self.device),
'logit_opacities': torch.logit(torch.from_numpy(opacities).to(self.device))
}
gripper_splat = root / 'log/gs/ckpts/gripper.splat' # gripper_new.splat
table_splat = root / 'log/gs/ckpts/table.splat'
self.gripper_params = read_splat(gripper_splat)
self.table_params = read_splat(table_splat)
def set_camera(self, w, h, intr, w2c=None, R=None, t=None, near=0.01, far=100.0):
if w2c is None:
assert R is not None and t is not None
w2c = Rt_to_w2c(R, t)
self.metadata = {
'w': w,
'h': h,
'k': intr,
'w2c': w2c,
}
self.config = {'near': near, 'far': far}
@torch.no_grad
def render(self, render_data, cam_id, bg=[0, 0, 0]):
render_data = {k: v.to(self.device) for k, v in render_data.items()}
w, h = self.metadata['w'], self.metadata['h']
k, w2c = self.metadata['k'], self.metadata['w2c']
cam = setup_camera(w, h, k, w2c, self.config['near'], self.config['far'], bg)
im, _, depth, = GaussianRasterizer(raster_settings=cam)(**render_data)
return im, depth
def knn_relations(self, bones):
k = self.k_rel
knn = NearestNeighbors(n_neighbors=k+1, algorithm='kd_tree').fit(bones.detach().cpu().numpy())
_, indices = knn.kneighbors(bones.detach().cpu().numpy()) # (N, k)
indices = indices[:, 1:] # exclude self
return indices
def knn_weights(self, bones, pts):
k = self.k_wgt
knn = NearestNeighbors(n_neighbors=k, algorithm='kd_tree').fit(bones.detach().cpu().numpy())
_, indices = knn.kneighbors(pts.detach().cpu().numpy())
bones_selected = bones[indices] # (N, k, 3)
dist = torch.norm(bones_selected - pts[:, None], dim=-1) # (N, k)
weights = 1 / (dist + 1e-6)
weights = weights / weights.sum(dim=-1, keepdim=True) # (N, k)
weights_all = torch.zeros((pts.shape[0], bones.shape[0]), device=pts.device)
weights_all[torch.arange(pts.shape[0])[:, None], indices] = weights
return weights_all
def rollout_and_render(self, pts_list, grippers=[], with_bg=False):
assert self.params is not None
pts_list = pts_list.to(self.device)
if grippers != []:
n_grippers = grippers.shape[1]
grippers = grippers.to(self.device)
gripper_center = grippers[:, :, :3]
gripper_quat = grippers[:, :, 6:10]
gripper_radius = grippers[:, :, 13]
xyz_0 = self.params['means3D']
rgb_0 = self.params['rgb_colors']
quat_0 = torch.nn.functional.normalize(self.params['unnorm_rotations'])
opa_0 = torch.sigmoid(self.params['logit_opacities'])
scales_0 = torch.exp(self.params['log_scales'])
pts_prev = pts_list[0]
xyz_list = [xyz_0]
rgb_list = [rgb_0]
quat_list = [quat_0]
opa_list = [opa_0]
scales_list = [scales_0]
for i in range(1, len(pts_list)):
pts = pts_list[i]
xyz, quat, _ = interpolate_motions(
bones=pts_prev,
motions=pts - pts_prev,
relations=self.knn_relations(pts_prev),
weights=self.knn_weights(pts_prev, xyz_list[-1]),
xyz=xyz_list[-1],
quat=quat_list[-1],
step=f'{i-1}->{i}'
)
pts_prev = pts
xyz_list.append(xyz)
quat_list.append(quat)
rgb_list.append(rgb_list[-1])
opa_list.append(opa_list[-1])
scales_list.append(scales_list[-1])
n_steps = len(xyz_list)
xyz = torch.stack(xyz_list, dim=0).to(torch.float32)
rgb = torch.stack(rgb_list, dim=0).to(torch.float32)
quat = torch.stack(quat_list, dim=0).to(torch.float32)
opa = torch.stack(opa_list, dim=0).to(torch.float32)
scales = torch.stack(scales_list, dim=0).to(torch.float32)
# interpolate smoothly
change_points = (xyz - torch.concatenate([xyz[0:1], xyz[:-1]], dim=0)).norm(dim=-1).sum(dim=-1).nonzero().squeeze(1)
change_points = torch.cat([torch.tensor([0]).to(change_points.device), change_points])
for i in range(1, len(change_points)):
start = change_points[i - 1]
end = change_points[i]
if end - start < 2: # gap is 0 or 1
continue
xyz[start:end] = torch.lerp(xyz[start][None], xyz[end][None], torch.linspace(0, 1, end - start + 1).to(xyz.device)[:, None, None])[:-1]
rgb[start:end] = torch.lerp(rgb[start][None], rgb[end][None], torch.linspace(0, 1, end - start + 1).to(rgb.device)[:, None, None])[:-1]
quat[start:end] = torch.lerp(quat[start][None], quat[end][None], torch.linspace(0, 1, end - start + 1).to(quat.device)[:, None, None])[:-1]
opa[start:end] = torch.lerp(opa[start][None], opa[end][None], torch.linspace(0, 1, end - start + 1).to(opa.device)[:, None, None])[:-1]
quat = torch.nn.functional.normalize(quat, dim=-1)
mean_xyz = xyz.mean((0, 1))
if with_bg:
## add table and gripper
# add table
t_pts, t_colors, t_scales, t_quats, t_opacities = self.table_params
t_pts = torch.tensor(t_pts).to(xyz.device).to(xyz.dtype)
t_colors = torch.tensor(t_colors).to(rgb.device).to(rgb.dtype)
t_scales = torch.tensor(t_scales).to(scales.device).to(scales.dtype)
t_quats = torch.tensor(t_quats).to(quat.device).to(quat.dtype)
t_opacities = torch.tensor(t_opacities).to(opa.device).to(opa.dtype)
# add table pos
t_pts = t_pts + torch.tensor([mean_xyz[0].item() - 0.36, mean_xyz[1].item() - 0.10, 0.02]).to(t_pts.device).to(t_pts.dtype)
# add gripper
g_pts, g_colors, g_scales, g_quats, g_opacities = self.gripper_params
g_pts = torch.tensor(g_pts).to(xyz.device).to(xyz.dtype)
g_colors = torch.tensor(g_colors).to(rgb.device).to(rgb.dtype)
g_scales = torch.tensor(g_scales).to(scales.device).to(scales.dtype)
g_quats = torch.tensor(g_quats).to(quat.device).to(quat.dtype)
g_opacities = torch.tensor(g_opacities).to(opa.device).to(opa.dtype)
g_pts_tip = g_pts[(g_pts[:, 2] > -0.10) & (g_pts[:, 2] < -0.02)]
g_pts_tip_mean_xy = g_pts_tip[:, :2].mean(dim=0)
g_pts_translation = torch.tensor([-g_pts_tip_mean_xy[0] - 0.02, -g_pts_tip_mean_xy[1] + 0.0, 0.07]).to(g_pts.device).to(g_pts.dtype)
g_pts = g_pts + g_pts_translation
# rotate gripper
gripper_mat = kornia.geometry.conversions.quaternion_to_rotation_matrix(gripper_quat) # (num_steps, num_grippers, 3, 3)
g_pts = g_pts @ gripper_mat # (num_steps, num_grippers, num_points, 3)
g_quats_mat = kornia.geometry.conversions.quaternion_to_rotation_matrix(g_quats) # (num_grippers, 3, 3)
g_quats_mat = g_quats_mat[None, None].repeat(n_steps, n_grippers, 1, 1, 1) # (num_steps, num_grippers, num_points, 3, 3)
g_quats_mat = gripper_mat.permute(0, 1, 3, 2)[:, :, None] @ g_quats_mat # (num_steps, num_grippers, num_points, 3, 3)
g_quats = kornia.geometry.conversions.rotation_matrix_to_quaternion(g_quats_mat) # (num_steps, num_grippers, num_points, 4)
# add gripper pos
g_pts = g_pts + gripper_center[:, :, None]
# reshape
g_pts = g_pts.reshape(n_steps, -1, 3)
g_colors = g_colors.repeat(n_grippers, 1)
g_quats = g_quats.reshape(n_steps, -1, 4)
g_opacities = g_opacities.repeat(n_grippers, 1)
g_scales = g_scales.repeat(n_grippers, 1)
# merge
bg_xyz = torch.cat([xyz, t_pts[None].repeat(n_steps, 1, 1), g_pts], dim=1)
bg_rgb = torch.cat([rgb, t_colors[None].repeat(n_steps, 1, 1), g_colors[None].repeat(n_steps, 1, 1)], dim=1)
bg_quat = torch.cat([quat, t_quats[None].repeat(n_steps, 1, 1), g_quats], dim=1)
bg_opa = torch.cat([opa, t_opacities[None].repeat(n_steps, 1, 1), g_opacities[None].repeat(n_steps, 1, 1)], dim=1)
bg_scales = torch.cat([scales, t_scales[None].repeat(n_steps, 1, 1), g_scales[None].repeat(n_steps, 1, 1)], dim=1)
bg_quat = torch.nn.functional.normalize(bg_quat, dim=-1)
rendervar_list = []
rendervar_list_bg = []
for t in range(n_steps):
rendervar = {
'means3D': xyz[t],
'colors_precomp': rgb[t],
'rotations': quat[t],
'opacities': opa[t],
'scales': scales[t],
'means2D': torch.zeros_like(xyz[t]),
}
rendervar_list.append(rendervar)
if with_bg:
rendervar_bg = {
'means3D': bg_xyz[t],
'colors_precomp': bg_rgb[t],
'rotations': bg_quat[t],
'opacities': bg_opa[t],
'scales': bg_scales[t],
'means2D': torch.zeros_like(bg_xyz[t]),
}
rendervar_list_bg.append(rendervar_bg)
return rendervar_list, rendervar_list_bg
def inverse_preprocess(cfg, p_x, grippers, source_data_root_episode):
dx = cfg.sim.num_grids_flexible[-1]
xyz_orig = np.load(source_data_root_episode / 'traj.npz')['xyz']
xyz = torch.tensor(xyz_orig, dtype=torch.float32)
R = torch.tensor(
[[1, 0, 0],
[0, 0, -1],
[0, 1, 0]]
).to(xyz.device).to(xyz.dtype)
xyz = torch.einsum('nij,jk->nik', xyz, R.T)
scale = cfg.sim.preprocess_scale
xyz = xyz * scale
if cfg.sim.preprocess_with_table:
global_translation = torch.tensor([
0.5 - (xyz[:, :, 0].max() + xyz[:, :, 0].min()) / 2,
dx * (cfg.model.clip_bound + 0.5) + 1e-5 - xyz[:, :, 1].min(),
0.5 - (xyz[:, :, 2].max() + xyz[:, :, 2].min()) / 2,
], dtype=xyz.dtype)
else:
global_translation = torch.tensor([
0.5 - (xyz[:, :, 0].max() + xyz[:, :, 0].min()) / 2,
0.5 - (xyz[:, :, 1].max() + xyz[:, :, 1].min()) / 2,
0.5 - (xyz[:, :, 2].max() + xyz[:, :, 2].min()) / 2,
], dtype=xyz.dtype)
p_x -= global_translation
grippers[:, :, :3] -= global_translation
p_x = p_x / scale
grippers[:, :, :3] = grippers[:, :, :3] / scale
p_x = torch.einsum('nij,jk->nik', p_x, torch.linalg.inv(R).T)
grippers[:, :, :3] = torch.einsum('nmi,ik->nmk', grippers[:, :, :3], torch.linalg.inv(R).T)
gripper_quat = grippers[:, :, 6:10] # (n_steps, n_grippers, 4)
gripper_rot = kornia.geometry.conversions.quaternion_to_rotation_matrix(gripper_quat) # (n_steps, n_gripper, 3, 3)
gripper_rot = R.T @ gripper_rot @ R
gripper_quat = kornia.geometry.conversions.rotation_matrix_to_quaternion(gripper_rot)
grippers[:, :, 6:10] = gripper_quat
return p_x, grippers
def get_camera(cfg, log_root, source_data_dir, source_episode_id, frame_id=0, camera_id=1):
h, w = 480, 848
calibration_dir = (log_root.parent.parent / source_data_dir).parent / f'episode_{source_episode_id:04d}' / 'calibration'
intr = np.load(calibration_dir / 'intrinsics.npy')
rvec = np.load(calibration_dir / 'rvecs.npy')
tvec = np.load(calibration_dir / 'tvecs.npy')
R = [cv2.Rodrigues(rvec[i])[0] for i in range(rvec.shape[0])]
T = [tvec[i, :, 0] for i in range(tvec.shape[0])]
extrs = np.zeros((len(R), 4, 4)).astype(np.float32)
for i in range(len(R)):
extrs[i, :3, :3] = R[i]
extrs[i, :3, 3] = T[i]
extrs[i, 3, 3] = 1
return {
'w': w,
'h': h,
'intr': intr[camera_id],
'w2c': extrs[camera_id],
}
@torch.no_grad()
def render(
cfg,
log_root,
iteration,
episode_names,
eval_dirname='eval',
eval_postfix='',
dataset_name='',
camera_id=1,
with_bg=False,
with_mask=False,
transparent=True,
start_step=None,
end_step=None,
):
if dataset_name == '':
eval_name = f'{cfg.train.name}/{eval_dirname}/{iteration:06d}'
else:
eval_name = f'{cfg.train.name}/{eval_dirname}/{dataset_name}/{iteration:06d}'
render_type = 'pv_gs'
render_type_gs = 'gs'
exp_root: Path = log_root / eval_name
state_root: Path = exp_root / 'state'
image_root: Path = exp_root / render_type
gs_root: Path = exp_root / render_type_gs
mkdir(image_root, overwrite=cfg.overwrite, resume=cfg.resume)
mkdir(gs_root, overwrite=cfg.overwrite, resume=cfg.resume)
if with_mask:
render_type_mask = 'mask'
episode_mask_root = exp_root / render_type_mask
mkdir(episode_mask_root, overwrite=cfg.overwrite, resume=cfg.resume)
if with_bg:
render_type_bg = 'pv_gs_bg'
render_type_gs_bg = 'gs_bg'
image_root_bg: Path = exp_root / render_type_bg
gs_root_bg: Path = exp_root / render_type_gs_bg
mkdir(image_root_bg, overwrite=cfg.overwrite, resume=cfg.resume)
mkdir(gs_root_bg, overwrite=cfg.overwrite, resume=cfg.resume)
video_path_list = []
for episode_idx, episode in enumerate(episode_names):
renderer = GSRenderer(cfg.render)
meta = np.loadtxt(log_root / str(cfg.train.source_dataset_name) / episode / 'meta.txt')
with open(log_root / str(cfg.train.source_dataset_name) / 'metadata.json') as f:
datadir_list = json.load(f)
episode_real_name = int(episode.split('_')[1])
datadir = datadir_list[episode_real_name]
source_data_dir = datadir['path']
source_episode_id = int(meta[0])
source_frame_start = int(meta[1]) + int(cfg.sim.n_history) * int(cfg.train.dataset_load_skip_frame) * int(cfg.train.dataset_skip_frame)
source_frame_end = int(meta[2])
episode_gs_init_path = (log_root.parent.parent / source_data_dir).parent / f'episode_{source_episode_id:04d}' / 'gs' / f'{source_frame_start:06d}.splat'
renderer.load_params(episode_gs_init_path)
episode_state_root = state_root / episode
episode_image_root = image_root / episode
episode_gs_root = gs_root / episode
mkdir(episode_image_root, overwrite=cfg.overwrite, resume=cfg.resume)
mkdir(episode_gs_root, overwrite=cfg.overwrite, resume=cfg.resume)
if with_mask:
episode_mask_root = episode_mask_root / episode
mkdir(episode_mask_root, overwrite=cfg.overwrite, resume=cfg.resume)
if with_bg:
episode_image_root_bg = image_root_bg / episode
episode_gs_root_bg = gs_root_bg / episode
mkdir(episode_image_root_bg, overwrite=cfg.overwrite, resume=cfg.resume)
mkdir(episode_gs_root_bg, overwrite=cfg.overwrite, resume=cfg.resume)
ckpt_paths = list(sorted(episode_state_root.glob('*.pt'), key=lambda x: int(x.stem)))
p_x_list = []
grippers_list = []
for i, path in enumerate(ckpt_paths):
if i % cfg.render.skip_frame != 0:
continue
ckpt = torch.load(path, map_location='cpu')
p_x = ckpt['x']
p_x_list.append(p_x)
use_grippers = 'grippers' in ckpt
grippers = None
if use_grippers:
grippers = ckpt['grippers']
if grippers is not None:
grippers_list.append(grippers)
p_x_list = torch.stack(p_x_list, dim=0)
grippers_list = torch.stack(grippers_list, dim=0) if grippers_list else []
p_x_list, grippers_list = inverse_preprocess(cfg, p_x_list, grippers_list,
source_data_root_episode=log_root / cfg.train.source_dataset_name / episode)
rendervar_list, rendervar_list_bg = renderer.rollout_and_render(p_x_list, grippers_list, with_bg=with_bg)
for i, path in enumerate(tqdm(ckpt_paths, desc=render_type)):
rendervar = rendervar_list[i // cfg.render.skip_frame]
renderer.set_camera(**get_camera(cfg, log_root, source_data_dir, source_episode_id, frame_id=i, camera_id=camera_id))
im, _ = renderer.render(rendervar, 0)
im = im.cpu().numpy().transpose(1, 2, 0)
im = (im * 255).astype(np.uint8)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
if transparent or with_mask:
rendervar['colors_precomp'] = torch.ones_like(rendervar['colors_precomp'])
mask, _ = renderer.render(rendervar, 0)
mask = mask.cpu().numpy().transpose(1, 2, 0)
if transparent:
im = cv2.cvtColor(im, cv2.COLOR_RGB2RGBA)
im[:, :, 3] = (mask * 255).mean(-1).astype(np.uint8)
if with_mask:
thresh = 0.1
mask = (mask > thresh).astype(np.float32)
mask = (mask * 255).astype(np.uint8)
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
save_path = str(episode_mask_root / f'{i // cfg.render.skip_frame:04d}.png')
cv2.imwrite(save_path, mask)
save_path = str(episode_image_root / f'{i // cfg.render.skip_frame:04d}.png')
cv2.imwrite(save_path, im)
gs_save_path = str(episode_gs_root / f'{i // cfg.render.skip_frame:04d}.splat')
save_to_splat(
pts=rendervar['means3D'].cpu().numpy(),
colors=rendervar['colors_precomp'].cpu().numpy(),
scales=rendervar['scales'].cpu().numpy(),
quats=rendervar['rotations'].cpu().numpy(),
opacities=rendervar['opacities'].cpu().numpy(),
output_file=gs_save_path,
center=False,
rotate=False,
)
if with_bg:
rendervar_bg = rendervar_list_bg[i // cfg.render.skip_frame]
renderer.set_camera(**get_camera(cfg, log_root, source_data_dir, source_episode_id, frame_id=i, camera_id=camera_id))
im, _ = renderer.render(rendervar_bg, 0)
im = im.cpu().numpy().transpose(1, 2, 0)
im = (im * 255).astype(np.uint8)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
if transparent:
rendervar_bg['colors_precomp'] = torch.ones_like(rendervar_bg['colors_precomp'])
mask, _ = renderer.render(rendervar_bg, 0)
mask = mask.cpu().numpy().transpose(1, 2, 0)
im = cv2.cvtColor(im, cv2.COLOR_RGB2RGBA)
im[:, :, 3] = (mask * 255).mean(-1).astype(np.uint8)
save_path = str(episode_image_root_bg / f'{i // cfg.render.skip_frame:04d}.png')
cv2.imwrite(save_path, im)
gs_save_path = str(episode_gs_root_bg / f'{i // cfg.render.skip_frame:04d}.splat')
save_to_splat(
pts=rendervar_bg['means3D'].cpu().numpy(),
colors=rendervar_bg['colors_precomp'].cpu().numpy(),
scales=rendervar_bg['scales'].cpu().numpy(),
quats=rendervar_bg['rotations'].cpu().numpy(),
opacities=rendervar_bg['opacities'].cpu().numpy(),
output_file=gs_save_path,
center=False,
rotate=False,
)
make_video(episode_image_root, image_root / f'{episode}{eval_postfix}.mp4', '%04d.png', cfg.render.fps)
video_path_list.append(image_root / f'{episode}{eval_postfix}.mp4')
if with_bg:
make_video(episode_image_root_bg, image_root_bg / f'{episode}{eval_postfix}.mp4', '%04d.png', cfg.render.fps)
return video_path_list
@torch.no_grad()
def do_gs(*args, **kwargs):
ret = render(*args, **kwargs)
return ret
|