File size: 22,365 Bytes
f96995c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import threading
import multiprocess as mp
import time
from enum import Enum
import traceback

import numpy as np
import transforms3d
import copy

from xarm.wrapper import XArmAPI

from .kinematics_utils import KinHelper
from .udp_util import udpReceiver, udpSender
from modules_planning.common.communication import XARM_STATE_PORT, XARM_CONTROL_PORT, XARM_CONTROL_PORT_L, XARM_CONTROL_PORT_R
from modules_planning.common.xarm import *

np.set_printoptions(precision=2, suppress=True)


class Rate:
    def __init__(self, *, duration):
        self.duration = duration
        self.last = time.time()

    def sleep(self, duration=None) -> None:
        duration = self.duration if duration is None else duration
        assert duration >= 0
        now = time.time()
        passed = now - self.last
        remaining = duration - passed
        assert passed >= 0
        if remaining > 0.0001:
            time.sleep(remaining)
        self.last = time.time()


class ControllerState(Enum):
    INIT = 0
    RUNNING = 1
    STOP = 2

class XarmController(mp.Process):
    
    name = "xarm_controller"
    kin_helper = KinHelper(robot_name='xarm7')

    XY_MIN, XY_MAX = XY_MIN, XY_MAX 
    X_MIN, X_MAX = X_MIN, X_MAX 
    Y_MIN, Y_MAX = Y_MIN, Y_MAX 
    Z_MIN, Z_MAX = Z_MIN, Z_MAX 
    
    MOVE_RATE = MOVE_RATE 
    MOVE_SLEEP = MOVE_SLEEP 
    XYZ_VELOCITY = XYZ_VELOCITY 
    ANGLE_VELOCITY_MAX = ANGLE_VELOCITY_MAX 

    GRIPPER_OPEN_MAX = GRIPPER_OPEN_MAX
    GRIPPER_OPEN_MIN = GRIPPER_OPEN_MIN

    POSITION_UPDATE_INTERVAL = POSITION_UPDATE_INTERVAL 
    COMMAND_CHECK_INTERVAL = COMMAND_CHECK_INTERVAL 


    def log(self, msg):
        if self.verbose:
            self.pprint(msg)
    
    @staticmethod
    def pprint(*args, **kwargs):
        try:
            stack_tuple = traceback.extract_stack(limit=2)[0]
            print(
                "[{}][{}] {}".format(
                    time.strftime("\033[92m%Y-%m-%d %H:%M:%S\033[0m", time.localtime(time.time())),
                    stack_tuple[1],
                    " ".join(map(str, args)),
                )
            )
        except:
            print(*args, **kwargs)

    def __init__(
        self,
        start_time,
        init_pose=[256.7, 5.1, 400.1, 178.9, 0.0, 1.4],
        init_servo_angle=[0.0, -45.0, 0.0, 30.0, 0.0, 75.0, 0.0],
        ip="192.168.1.196", 
        mode="2D",
        robot_id=0,
        command_mode="cartesian",
        gripper_enable=False,
        speed=50,  # mm/s
        verbose=False,
    ):
        
        self.robot_id = robot_id
        self.init_pose = init_pose
        self.init_servo_angle = init_servo_angle
        self.speed = speed
        self.command_mode = command_mode
        assert mode in ["2D","3D"], "mode must be 2D or 3D"
        super().__init__()
        
        self.start_time = start_time
        self._ip = ip
        self.gripper_enable = gripper_enable
        self.verbose = verbose
        self.exe_lock = mp.Lock()

        self.state = mp.Value('i', ControllerState.INIT.value)

        self.cur_trans_q = mp.Queue(maxsize=1)
        self.cur_qpos_q = mp.Queue(maxsize=1)
        self.cur_gripper_q = mp.Queue(maxsize=1)

        self.command_receiver = None

        self.cur_gripper_pos = None
        self.cur_qpos = None

        self.teleop_activated = False

    # ======= xarm controller queue START =======
    def update_cur_position(self):
        """ update the current position of the arm in a separate thread,
        due to the unprecise of get_position API, use sapien fk to do the position closed loop"""

        if self.robot_id == -1:
            self.state_sender = udpSender(port=XARM_STATE_PORT)
        try:
            while self.state.value in [ControllerState.INIT.value, ControllerState.RUNNING.value]:

                if self.gripper_enable:
                    cur_gripper_pos = self.get_gripper_state()
                    if not self.cur_gripper_q.full():
                        self.cur_gripper_q.put(cur_gripper_pos)
                    self.cur_gripper_pos = cur_gripper_pos

                cur_qpos = np.array(self._arm.get_servo_angle()[1][0:7]) / 180. * np.pi

                fk_trans_mat = self.kin_helper.compute_fk_sapien_links(cur_qpos, [self.kin_helper.sapien_eef_idx])[0]
                cur_xyzrpy = np.zeros(6)
                cur_xyzrpy[:3] = fk_trans_mat[:3, 3] * 1000
                cur_xyzrpy[3:] = transforms3d.euler.mat2euler(fk_trans_mat[:3, :3])
                cur_xyzrpy[3:] = cur_xyzrpy[3:] / np.pi * 180

                # always update the latest position
                if not self.cur_trans_q.full():
                    self.cur_trans_q.put(fk_trans_mat)
                if not self.cur_qpos_q.full():
                    self.cur_qpos_q.put(cur_qpos)

                self.cur_qpos = cur_qpos

                if self.robot_id == -1:
                    state = {
                        "e2b": fk_trans_mat,
                        "pos": cur_xyzrpy,
                        "qpos": cur_qpos,
                    }
                    if self.gripper_enable:
                        state["gripper"] = cur_gripper_pos
                    self.state_sender.send(state)

        except:
            self.pprint(f"update_cur_position error")
            self.state.value = ControllerState.STOP.value
        finally:
            # self.state_sender.close()
            # self.command_q.close()
            self.cur_trans_q.close()
            self.cur_qpos_q.close()
            self.cur_gripper_q.close()
            print("update_cur_position exit!")

    def get_current_joint(self):
        return copy.deepcopy(self.cur_qpos)
    
    def get_current_gripper(self):
        return copy.deepcopy(self.cur_gripper_pos)

    def get_current_joint_deg(self):
        return copy.deepcopy(self.cur_qpos) / np.pi * 180

    def get_current_pose(self):
        raise NotImplementedError
        return self.cur_xyzrpy

    # ======= xarm controller queue END =======


    # ======= xarm SDK API wrapper START =======
    def open_gripper(self, wait=True):
        return self.set_gripper_openness(self.GRIPPER_OPEN_MAX, wait=wait)

    def close_gripper(self, wait=True):
        return self.set_gripper_openness(self.GRIPPER_OPEN_MIN, wait=wait)

    # @DeprecationWarning
    def set_gripper_openness(self, openness, wait=True):
        if not self.is_alive:
            raise ValueError("Robot is not alive!")
        code = self._arm.set_gripper_position(openness, wait=wait)
        if not self._check_code(code, "set_gripper_position"):
            raise ValueError("close_gripper Error")
        return True

    def get_gripper_state(self):
        if not self.is_alive:
            raise ValueError("Robot is not alive!")
        code, state = self._arm.get_gripper_position()
        if not self._check_code(code, "get_gripper_position"):
            raise ValueError("get_gripper_position Error")
        return state

    # Register error/warn changed callback
    def _error_warn_changed_callback(self, data):
        if data and data["error_code"] != 0:
            self.alive = False
            self.pprint("err={}, quit".format(data["error_code"]))
            self._arm.release_error_warn_changed_callback(
                self._error_warn_changed_callback
            )

    # Register state changed callback
    def _state_changed_callback(self, data):
        if data and data["state"] == 4:
            self.alive = False
            self.pprint("state=4, quit")
            self._arm.release_state_changed_callback(self._state_changed_callback)
    
    # Register count changed callback
    def _count_changed_callback(self, data):
        if self.is_alive:
            self.pprint("counter val: {}".format(data["count"]))

    def _check_code(self, code, label):
        if not self.is_alive or code != 0:
            # import ipdb; ipdb.set_trace()
            self.alive = False
            ret1 = self._arm.get_state()
            ret2 = self._arm.get_err_warn_code()
            self.pprint(
                "{}, code={}, connected={}, state={}, error={}, ret1={}. ret2={}".format(
                    label,
                    code,
                    self._arm.connected,
                    self._arm.state,
                    self._arm.error_code,
                    ret1,
                    ret2,
                )
            )
        return self.is_alive
    # ======= xarm SDK API wrapper END =======

    # ======= xarm control START =======
    def _init_robot(self):
        self._arm.clean_warn()
        self._arm.clean_error()
        self._arm.motion_enable(True)
        if self.command_mode == "cartesian":
            mode = 1
        elif self.command_mode == "joints":
            mode = 4
        else:
            raise ValueError("Invalid command mode")
        self._arm.set_mode(mode)  # NOTE: 0: position control mode, 1: servo control mode, 4: velocity control mode
        self._arm.set_state(0)
        if self.gripper_enable:
            self._arm.set_gripper_enable(True)
            self._arm.set_gripper_mode(0)
            self._arm.clean_gripper_error()
        # self._arm.set_collision_sensitivity(1)
        time.sleep(1)
        self._arm.register_error_warn_changed_callback(
            self._error_warn_changed_callback
        )
        self._arm.register_state_changed_callback(self._state_changed_callback)
        if hasattr(self._arm, "register_count_changed_callback"):
            self._arm.register_count_changed_callback(self._count_changed_callback)
        
        self.state.value = ControllerState.RUNNING.value

    def reset(self):
        # return self._reset()  # position control
        # return self._reset_pose()  # NOTE: servo control, use sapien ik to move
        return
    
    def _reset(self, wait=True):
        self.move_to_pose(self.init_pose, wait=wait)
        self._arm.set_servo_angle(angle=self.init_servo_angle, isradian=False, wait=wait)
        if self.gripper_enable:
            self.open_gripper(wait=wait)

    def _reset_pose(self):
        # init pose
        if not self.exe_lock.acquire(block=True, timeout=1):
            self.log("xarm reset failed! exe_lock not acquired!")
            return
        
        self.move(self.init_pose, steps=500, clean=True)
        self.exe_lock.release()

    def check_valid_move(self, next_position, steps):
        # absolute position
        if len(next_position) == 6:
            x, y, z, roll, pitch, yaw = next_position
        elif self.gripper_enable and len(next_position) == 7:
            x, y, z, roll, pitch, yaw, gripper_pos = next_position
            if gripper_pos < self.GRIPPER_OPEN_MIN or gripper_pos > self.GRIPPER_OPEN_MAX:
                self.log(f"invalid move command {next_position}! gripper out of range!")
                return False
        
        if x ** 2 + y ** 2 > self.XY_MAX ** 2 or x ** 2 + y ** 2 < self.XY_MIN ** 2\
            or x < self.X_MIN or x > self.X_MAX or y < self.Y_MIN or y > self.Y_MAX:
            self.log(f"invalid move command {next_position}! x,y out of range!")
            return False
        elif z > self.Z_MAX or z < self.Z_MIN:
                self.log(f"invalid move command {next_position}! z out of range!")
                return False

        return True

    def move_joints(self, next_joints, wait=False, ignore_error=False):
        assert wait == False, "wait is not supported in move_joints"
        if not self.is_alive:
            raise ValueError("Robot is not alive!")
        if self.gripper_enable and len(next_joints) == 8:
            if not np.isclose(self.cur_gripper_pos, next_joints[-1]):
                self.set_gripper_openness(next_joints[-1], wait=wait)
            next_joints = next_joints[:-1]
        
        # velocity control (next_joints needs to be delta)
        v = next_joints / self.COMMAND_CHECK_INTERVAL * 0.15
        v = v.tolist()
        code = self._arm.vc_set_joint_velocity(v, is_radian=True, is_sync=False, duration=0)
        
        # position control
        # next_joints = next_joints.tolist()
        # code = self._arm.set_servo_angle_j(angles=next_joints, is_radian=True, speed=1.0, acc=None, wait=wait)
        
        if not self._check_code(code, "vc_set_joint_velocity"):
            raise ValueError("move_joints Error")
        if ignore_error:
            self._arm.clean_error()
            self._arm.clean_warn()

    def move_to_pose(self, pose, wait=False, ignore_error=False):
        return self.move(pose)

    def move(self, next_position, steps=10, clean=True):
        self._move_ik(next_position, steps, clean)  # NOTE: use sapien ik to move
        # self._move(next_position, steps, clean)

    def _move(self, pose, steps, clean):
        if not self.is_alive:
            raise ValueError("Robot is not alive!")
        code = self._arm.set_position(
            pose[0], pose[1], pose[2], pose[3], pose[4], pose[5], speed=self.speed, wait=True
        )
        if not self._check_code(code, "set_position"):
            raise ValueError("move_to_pose Error")
        if clean:
            self._arm.clean_error()
            self._arm.clean_warn()

    def _move_ik(self, next_position, steps, clean):
        """next_position :  x,y,z in mm   and   r,p,y in degree  [and gripper]"""
        assert next_position is not None, "next_position is not set!"
        next_position = np.array(next_position)
        if not self.check_valid_move(next_position, steps):
            print(f"invalid move command {next_position}!")
            return
        
        self.log(f'move start: {next_position}')

        if self.gripper_enable and len(next_position) == 8:
            if not np.isclose(self.cur_gripper_pos, next_position[-1]):
                self.set_gripper_openness(next_position[-1])
            next_position = next_position[:-1]

        initial_qpos = np.array(self._arm.get_servo_angle()[1][0:7]) / 180. * np.pi
        next_position_m_rad = np.zeros_like(np.array(next_position))
        next_position_m_rad[0:3] = np.array(next_position)[0:3] / 1000.
        next_position_m_rad[3:] = np.array(next_position)[3:] / 180. * np.pi
        next_servo_angle = self.kin_helper.compute_ik_sapien(initial_qpos, next_position_m_rad)

        # fix the eef joint to [-pi,pi]
        next_servo_angle[-1] = (next_servo_angle[-1] + np.pi) % (2 * np.pi) - np.pi

        # NOTE: In the servo mode: state(1), the actual speed is contorlled by the
        #       rate of command sending and the the distance between the current and target position 
        # The steps of each move is decided by the distance of moving to keep speed constant
        init_position = self.kin_helper.compute_fk_sapien_links(initial_qpos, [self.kin_helper.sapien_eef_idx])[0][:3,3] * 1000
        dis_diff = np.array(next_position[:3]) - np.array(init_position)
        distance = np.linalg.norm(dis_diff) # in millimeter
        min_steps = int(distance / self.XYZ_VELOCITY)
        self.log(f"distance: {distance}, min_steps: {min_steps}")
        steps = max(min_steps, steps)

        # TODO: add max angular velocity control
        angle_diff = np.array(next_servo_angle) - np.array(initial_qpos)
        angle_distance = np.max(abs(angle_diff)) *180 / np.pi
        self.log(f"angle_distance: {angle_distance}")
        self.log(f"last steps: {steps}, angle ref steps: {int(angle_distance / self.ANGLE_VELOCITY_MAX)}")
        steps = max(steps, int(angle_distance / self.ANGLE_VELOCITY_MAX))

        tic = time.time()
        for i in range(steps): 
            angle = initial_qpos + (next_servo_angle - initial_qpos) * (i + 1) / steps
            if not self.is_alive:
                raise ValueError("Robot is not alive!")
            code = self._arm.set_servo_angle_j(angles=angle, is_radian=True, speed=1)
            if not self._check_code(code, "set_position"):
                raise ValueError("move Error")
            time.sleep(self.MOVE_SLEEP)

        self.log(f"move end: volecity: {distance/(time.time()-tic):.2f} mm/s")

        if clean:
            self._arm.clean_error()
            self._arm.clean_warn()

    # ======= xarm control END =======

    # ======= main thread loop =======
    def run(self):
        # the arm initialization must be invoked in the same process
        print("Connecting to xarm at", self._ip)
        self._arm = XArmAPI(self._ip)
        print("Connected to xarm at", self._ip)
        if self.verbose:
            self.log(f"Connected to xarm at {self._ip}")
        self._init_robot()

        # NOTE: the arm can only be interacted with the process created the API class, 
        self.update_pos_t = threading.Thread(target=self.update_cur_position, name="update_cur_position")
        self.update_pos_t.start()

        port = XARM_CONTROL_PORT_L if self.robot_id <= 0 else XARM_CONTROL_PORT_R  # -1: keyboard, 0: gello left, 1: gello right
        self.command_receiver = udpReceiver(ports={'xarm_control': port})
        self.command_receiver.start()

        print(f"{'='*20} xarm start! state: {ControllerState(self.state.value)}")
        self.reset()
        print(f"{'='*20} xarm reset! state: {ControllerState(self.state.value)}")
        
        command = None
        self.teleop_activated = False if self.command_mode == 'joints' else True
        rate = Rate(
            duration=COMMAND_CHECK_INTERVAL,
        )

        while self.state.value == ControllerState.RUNNING.value:
            try:
                start_time = time.time()
                commands = self.command_receiver.get("xarm_control", pop=True)
                if commands is None or len(commands) == 0:
                    if self.command_mode == 'joints':  # velocity control
                        self._arm.vc_set_joint_velocity([0, 0, 0, 0, 0, 0, 0], is_radian=True, is_sync=False, duration=0)
                    rate.sleep()
                    continue

                print_commands = False
                if len(commands[0]) > 0 and print_commands:
                    if self.robot_id == 1:
                        print('\t' * 12, end='')
                    print(f'activated: {self.teleop_activated}, commands: {[np.round(c, 4) for c in commands[0]]}')

                with self.exe_lock:
                    self.log("xarm controller get lock")
                    self.log(f"new commands at {time.time() - self.start_time:.2f}")
                    
                    for command in commands:
                        self.log(f"get command: {command}")

                        if isinstance(command, str):
                            if command == "quit":
                                break

                        if self.command_mode == 'cartesian':
                            self.move(command)

                        if self.command_mode == 'joints':
                            command_state = np.array(command)

                            assert len(command_state) == 8, "command state must be 8-dim"

                            current_joints = self.get_current_joint()
                            current_gripper = self.get_current_gripper()
                            current_gripper = (current_gripper - GRIPPER_OPEN_MAX) / (GRIPPER_OPEN_MIN - GRIPPER_OPEN_MAX)
                            current_state = np.concatenate([current_joints, np.array([current_gripper])])

                            delta = command_state - current_state
                            joint_delta_norm = np.linalg.norm(delta[0:7])
                            max_joint_delta = np.abs(delta[0:7]).max()

                            max_activate_delta = 0.5
                            max_delta_norm = 0.10
                            if not self.teleop_activated:
                                if max_joint_delta < max_activate_delta:
                                    self.teleop_activated = True
                                next_state = current_state
                            else:
                                if joint_delta_norm > max_delta_norm:
                                    delta[0:7] = delta[0:7] / joint_delta_norm * max_delta_norm
                                next_state = current_state + delta
                            
                            next_state[0:7] = next_state[0:7] - current_state[0:7]
                            
                            # denormalize gripper position
                            gripper_pos = next_state[-1]
                            denormalized_gripper_pos = gripper_pos * (GRIPPER_OPEN_MIN - GRIPPER_OPEN_MAX) + GRIPPER_OPEN_MAX
                            next_state[-1] = denormalized_gripper_pos

                            self.move_joints(next_state)

                    if command == "quit":
                        break
                
                rate.sleep()
            
            except:
                self.log(f"Error in xarm controller")
                break

        self.stop()
        self.command_receiver.stop()
        print("xarm controller stopped")

    # ======= process control =======
    # Only the process created the API class can start and control the robot, init in the `run` function 
    
    def start(self) -> None:
        return super().start()
    
    def stop(self):
        self.state.value = ControllerState.STOP.value
        print(f"{'='*20} xarm exit! state: {ControllerState(self.state.value)}")

    @property
    def is_alive(self):
        """check whether the robot and the controller is alive
        To check only the controller condition, use self.state.value == ControllerState.RUNNING.value"""
        if self.is_controller_alive and self._arm.connected and self._arm.error_code == 0:
            if self._arm.state == 5:
                cnt = 0
                while self._arm.state == 5 and cnt < 5:
                    cnt += 1
                    time.sleep(0.1)
            return self._arm.state < 4
        else:
            return False

    @property
    def is_controller_alive(self):
        return self.state.value == ControllerState.RUNNING.value

    
if __name__ == "__main__":

    start_time = time.time()
    controller = XarmController(
        start_time=start_time,
        gripper_enable=False,
        z_plane_height=434,
        verbose=True,)
    controller.start()
    controller.join()