File size: 9,530 Bytes
f96995c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from pathlib import Path
import torch
import numpy as np
import cv2
import os
import subprocess
import open3d as o3d
from tqdm import tqdm

from pgnd.utils import get_root
from pgnd.ffmpeg import make_video
import sys
root: Path = get_root(__file__)

from diff_gaussian_rasterization import GaussianRasterizer
from diff_gaussian_rasterization import GaussianRasterizationSettings as Camera
from gs.helpers import setup_camera
from gs.external import densify
from gs.train_utils import get_custom_dataset, initialize_params, initialize_optimizer, get_loss, report_progress, get_batch


def Rt_to_w2c(R, t):
    w2c = np.concatenate([np.concatenate([R, t.reshape(3, 1)], axis=1), np.array([[0, 0, 0, 1]])], axis=0)
    w2c = np.linalg.inv(w2c)
    return w2c


class GSTrainer:

    def __init__(self, config, device):
        self.config = config
        self.device = device
        self.clear()
    
    def clear(self, clear_params=True):
        # training data
        self.init_pt_cld = None
        self.metadata = None
        self.img_list = None
        self.seg_list = None
        # training results
        if clear_params:
            self.params = None
    
    @torch.no_grad
    def render(self, render_data, cam_id, bg=[0.7, 0.7, 0.7]):
        render_data = {k: v.to(self.device) for k, v in render_data.items()}
        w, h = self.metadata['w'], self.metadata['h']
        k = self.metadata['k'][cam_id]
        w2c = self.metadata['w2c'][cam_id]
        cam = setup_camera(w, h, k, w2c, self.config['near'], self.config['far'], bg)
        im, _, depth, = GaussianRasterizer(raster_settings=cam)(**render_data)
        return im, depth
    
    def update_state_env(self, pcd, env, imgs, masks):  # RGB
        R_list, t_list = env.get_extrinsics()
        intr_list = env.get_intrinsics()
        rgb_list = []
        seg_list = []
        for c in range(env.n_fixed_cameras):
            rgb_list.append(imgs[c] * masks[c][:, :, None])
            seg_list.append(masks[c] * 1.0)
        self.update_state(pcd, rgb_list, seg_list, R_list, t_list, intr_list)

    def update_state_no_env(self, pcd, imgs, masks, R_list, t_list, intr_list, n_cameras=4):  # RGB
        rgb_list = []
        seg_list = []
        for c in range(n_cameras):
            rgb_list.append(imgs[c] * masks[c][:, :, None])
            seg_list.append(masks[c] * 1.0)
        self.update_state(pcd, rgb_list, seg_list, R_list, t_list, intr_list)

    def update_state(self, pcd, img_list, seg_list, R_list, t_list, intr_list):
        pts = np.array(pcd.points).astype(np.float32)
        colors = np.array(pcd.colors).astype(np.float32)
        seg = np.ones_like(pts[:, 0:1])
        self.init_pt_cld = np.concatenate([pts, colors, seg], axis=1)
        w, h = img_list[0].shape[1], img_list[0].shape[0]
        assert np.all([img.shape[1] == w and img.shape[0] == h for img in img_list])
        self.metadata = {
            'w': w,
            'h': h,
            'k': [intr for intr in intr_list],
            'w2c': [Rt_to_w2c(R, t) for R, t in zip(R_list, t_list)]
        }
        self.img_list = img_list
        self.seg_list = seg_list
    
    def train(self, vis_dir):
        params, variables = initialize_params(self.init_pt_cld, self.metadata)
        optimizer = initialize_optimizer(params, variables)
        dataset = get_custom_dataset(self.img_list, self.seg_list, self.metadata)
        todo_dataset = []
        num_iters = self.config['num_iters']
        loss_weights = {'im': self.config['weight_im'], 'seg': self.config['weight_seg']}
        densify_params = {
            'grad_thresh': self.config['grad_thresh'],
            'remove_thresh': self.config['remove_threshold'], 
            'remove_thresh_5k': self.config['remove_thresh_5k'], 
            'scale_scene_radius': self.config['scale_scene_radius']
        }
        progress_bar = tqdm(range(num_iters), dynamic_ncols=True)
        for i in range(num_iters): 
            curr_data = get_batch(todo_dataset, dataset)
            loss, variables = get_loss(params, curr_data, variables, loss_weights)
            loss.backward()
            with torch.no_grad():
                params, variables, num_pts = densify(params, variables, optimizer, i, **densify_params)
                report_progress(params, dataset[0], i, progress_bar, num_pts, vis_dir=vis_dir)
                optimizer.step()
                optimizer.zero_grad(set_to_none=True)
        progress_bar.close()
        params = {k: v.detach() for k, v in params.items()}
        self.params = params

    def rollout_and_render(self, dm, action, vis_dir=None, save_images=True, overwrite_params=True, remove_black=False):
        assert vis_dir is not None
        assert self.params is not None

        xyz_0 = self.params['means3D']
        rgb_0 = self.params['rgb_colors']
        quat_0 = torch.nn.functional.normalize(self.params['unnorm_rotations'])
        opa_0 = torch.sigmoid(self.params['logit_opacities'])
        scales_0 = torch.exp(self.params['log_scales'])

        low_opa_idx = opa_0[:, 0] < 0.1
        xyz_0 = xyz_0[~low_opa_idx]
        rgb_0 = rgb_0[~low_opa_idx]
        quat_0 = quat_0[~low_opa_idx]
        opa_0 = opa_0[~low_opa_idx]
        scales_0 = scales_0[~low_opa_idx]

        if remove_black:
            low_color_idx = rgb_0.sum(dim=-1) < 0.5
            xyz_0 = xyz_0[~low_color_idx]
            rgb_0 = rgb_0[~low_color_idx]
            quat_0 = quat_0[~low_color_idx]
            opa_0 = opa_0[~low_color_idx]
            scales_0 = scales_0[~low_color_idx]

        eef_xyz_start = action[0]
        eef_xyz_end = action[1]

        dist_thresh = 0.005  # 5mm
        n_steps = int((eef_xyz_end - eef_xyz_start).norm().item() / dist_thresh)
        eef_xyz = torch.lerp(eef_xyz_start, eef_xyz_end, torch.linspace(0, 1, n_steps).to(self.device)[:, None])
        eef_xyz_pad = torch.cat([eef_xyz, eef_xyz_end[None].repeat(dm.n_his, 1)], dim=0)
        eef_xyz_pad = eef_xyz_pad[:, None]  # (n_steps, 1, 3)
        n_steps = eef_xyz_pad.shape[0]

        inlier_idx_all = np.arange(len(xyz_0))  # no outlier removal

        xyz, rgb, quat, opa, xyz_bones, eef = dm.rollout(
                xyz_0, rgb_0, quat_0, opa_0, eef_xyz_pad, n_steps, inlier_idx_all)

        # interpolate smoothly
        change_points = (xyz - torch.concatenate([xyz[0:1], xyz[:-1]], dim=0)).norm(dim=-1).sum(dim=-1).nonzero().squeeze(1)
        change_points = torch.cat([torch.tensor([0]), change_points])
        for i in range(1, len(change_points)):
            start = change_points[i - 1]
            end = change_points[i]
            if end - start < 2:  # 0 or 1
                continue
            xyz[start:end] = torch.lerp(xyz[start][None], xyz[end][None], torch.linspace(0, 1, end - start + 1).to(xyz.device)[:, None, None])[:-1]
            rgb[start:end] = torch.lerp(rgb[start][None], rgb[end][None], torch.linspace(0, 1, end - start + 1).to(rgb.device)[:, None, None])[:-1]
            quat[start:end] = torch.lerp(quat[start][None], quat[end][None], torch.linspace(0, 1, end - start + 1).to(quat.device)[:, None, None])[:-1]
            opa[start:end] = torch.lerp(opa[start][None], opa[end][None], torch.linspace(0, 1, end - start + 1).to(opa.device)[:, None, None])[:-1]
            xyz_bones[start:end] = torch.lerp(xyz_bones[start][None], xyz_bones[end][None], torch.linspace(0, 1, end - start + 1).to(xyz_bones.device)[:, None, None])[:-1]
            eef[start:end] = torch.lerp(eef[start][None], eef[end][None], torch.linspace(0, 1, end - start + 1).to(eef.device)[:, None, None])[:-1]
        
        for _ in range(3):
            xyz[1:-1] = (xyz[:-2] + 2 * xyz[1:-1] + xyz[2:]) / 4
            # quat[1:-1] = (quat[:-2] + 2 * quat[1:-1] + quat[2:]) / 4

        quat = torch.nn.functional.normalize(quat, dim=-1)

        rendervar_list = []
        visvar_list = []
        # im_list = []
        for t in range(n_steps):
            rendervar = {
                'means3D': xyz[t],  
                'colors_precomp': rgb[t],
                'rotations': quat[t],
                'opacities': opa[t],
                'scales': scales_0,
                'means2D': torch.zeros_like(xyz[t]),
            }
            rendervar_list.append(rendervar)

            visvar = {
                'xyz_bones': xyz_bones[t].numpy(), # params['means3D'][t][fps_idx].detach().cpu().numpy(),
                'eef': eef[t].numpy(), # eef_xyz[t].detach().cpu().numpy(),
            }
            visvar_list.append(visvar)
            
            if save_images:
                im, _ = self.render(rendervar, 0, bg=[0, 0, 0])
                im = im.cpu().numpy().transpose(1, 2, 0)
                im = (im * 255).astype(np.uint8)
                # im_list.append(im)
                cv2.imwrite(os.path.join(vis_dir, f'{t:04d}.png'), im[:, :, ::-1].copy())
        
        if save_images:
            make_video(vis_dir, os.path.join(os.path.dirname(vis_dir), f"{vis_dir.split('/')[-1]}.mp4"), '%04d.png', 5)
        
        if overwrite_params:
            self.params['means3D'] = xyz[-1].to(self.device)
            self.params['rgb_colors'] = rgb[-1].to(self.device)
            self.params['unnorm_rotations'] = quat[-1].to(self.device)
            self.params['logit_opacities'] = torch.logit(opa[-1]).to(self.device)
            self.params['log_scales'] = torch.log(scales_0).to(self.device)
            self.params['means2D'] = torch.zeros_like(xyz[-1]).to(self.device)

        return rendervar_list, visvar_list