File size: 7,597 Bytes
f96995c
 
ccf4125
f96995c
a1f54d5
 
3774569
 
f96995c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccf4125
f96995c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccf4125
f96995c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import os
# import open3d as o3d
import numpy as np
from pathlib import Path

# import importlib
# diff_gaussian_rasterization = importlib.import_module("diff_gaussian_rasterization")
from diff_gaussian_rasterization import GaussianRasterizationSettings as Camera


def setup_camera(w, h, k, w2c, near=0.01, far=100.0, bg=[0, 0, 0], z_threshold=0.2, device='cuda'):
    fx, fy, cx, cy = k[0][0], k[1][1], k[0][2], k[1][2]
    w2c = torch.tensor(w2c).cuda().float()
    cam_center = torch.inverse(w2c)[:3, 3]
    w2c = w2c.unsqueeze(0).transpose(1, 2)
    opengl_proj = torch.tensor([[2 * fx / w, 0.0, -(w - 2 * cx) / w, 0.0],
                                [0.0, 2 * fy / h, -(h - 2 * cy) / h, 0.0],
                                [0.0, 0.0, far / (far - near), -(far * near) / (far - near)],
                                [0.0, 0.0, 1.0, 0.0]]).cuda().float().unsqueeze(0).transpose(1, 2)
    full_proj = w2c.bmm(opengl_proj)
    cam = Camera(
        image_height=h,
        image_width=w,
        tanfovx=w / (2 * fx),
        tanfovy=h / (2 * fy),
        bg=torch.tensor(bg, dtype=torch.float32, device=device),
        scale_modifier=1.0,
        viewmatrix=w2c.to(device),
        projmatrix=full_proj.to(device),
        sh_degree=0,
        campos=cam_center.to(device),
        prefiltered=False,
        z_threshold=z_threshold,
    )
    return cam


def params2rendervar(params):
    rendervar = {
        'means3D': params['means3D'],
        'colors_precomp': params['rgb_colors'],
        'rotations': torch.nn.functional.normalize(params['unnorm_rotations']),
        'opacities': torch.sigmoid(params['logit_opacities']),
        'scales': torch.exp(params['log_scales']),
        'means2D': torch.zeros_like(params['means3D'], requires_grad=True, device="cuda") + 0
    }
    return rendervar

def params2rendervar_wt(params, t):
    print(params['unnorm_rotations'][t])
    rendervar = {
        'means3D': params['means3D'][t],
        'colors_precomp': params['rgb_colors'][t],
        'rotations': torch.nn.functional.normalize(params['unnorm_rotations'][t]),
        'opacities': torch.sigmoid(params['logit_opacities'][t]),
        'scales': torch.exp(params['log_scales'][t]),
        'means2D': torch.zeros_like(params['means3D'][t], requires_grad=True, device="cuda") + 0
    }
    return rendervar

def params2rendervar_consistent_rgb(params, variables):
    rendervar = {
        'means3D': params['means3D'],
        'colors_precomp': variables['rgb_colors'],
        'rotations': torch.nn.functional.normalize(params['unnorm_rotations']),
        'opacities': torch.sigmoid(params['logit_opacities']),
        'scales': torch.exp(params['log_scales']),
        'means2D': torch.zeros_like(params['means3D'], requires_grad=True, device="cuda") + 0
    }
    return rendervar


def l1_loss_v1(x, y):
    return torch.abs((x - y)).mean()


def l1_loss_v2(x, y):
    return (torch.abs(x - y).sum(-1)).mean()


def weighted_l2_loss_v1(x, y, w):
    return torch.sqrt(((x - y) ** 2) * w + 1e-20).mean()


def weighted_l2_loss_v2(x, y, w):
    return torch.sqrt(((x - y) ** 2).sum(-1) * w + 1e-20).mean()


def quat_mult(q1, q2):
    w1, x1, y1, z1 = q1.T
    w2, x2, y2, z2 = q2.T
    w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
    x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
    y = w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2
    z = w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2
    return torch.stack([w, x, y, z]).T


def o3d_knn(pts, num_knn):
    import open3d as o3d
    indices = []
    sq_dists = []
    pcd = o3d.geometry.PointCloud()
    # breakpoint()
    # print(pts.shape)
    pts_cont = np.ascontiguousarray(pts, np.float64)
    # print(pts_cont.shape)
    pcd.points = o3d.utility.Vector3dVector(np.ascontiguousarray(pts, np.float64))
    if len(pcd.points) == 0:
        print("Point cloud is empty!")
    else:
        pcd_tree = o3d.geometry.KDTreeFlann(pcd)

    for p in pcd.points:
        [_, i, d] = pcd_tree.search_knn_vector_3d(p, num_knn + 1)
        indices.append(i[1:])
        sq_dists.append(d[1:])
    return np.array(sq_dists), np.array(indices)

def o3d_knn_tensor(pts_tensor, num_knn):
    import open3d as o3d
    if pts_tensor.numel() == 0:
        print("Point cloud is empty!")
        return None, None

    pts_np = pts_tensor.detach().cpu().numpy() if pts_tensor.is_cuda else pts_tensor.numpy()
    pts_np_cont = np.ascontiguousarray(pts_np, dtype=np.float64)

    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(pts_np_cont)

    pcd_tree = o3d.geometry.KDTreeFlann(pcd)
    
    indices = []
    sq_dists = []

    for p in pts_np_cont:
        [_, idx, dist] = pcd_tree.search_knn_vector_3d(p, num_knn + 1)
        indices.append(idx[1:])  # Skip the first index since it's the point itself
        sq_dists.append(dist[1:])

    return torch.tensor(sq_dists, dtype=pts_tensor.dtype, device=pts_tensor.device), torch.tensor(indices, dtype=torch.long, device=pts_tensor.device)


def params2cpu(params, is_initial_timestep):
    if is_initial_timestep:
        res = {k: v.detach().cpu().contiguous().numpy() for k, v in params.items()}
    else:
        res = {k: v.detach().cpu().contiguous().numpy() for k, v in params.items() if
               k in ['means3D', 'rgb_colors', 'unnorm_rotations']}
    return res


def save_params(output_params, seq, exp):
    to_save = {}
    for k in output_params[0].keys():
        if k in output_params[1].keys():
            to_save[k] = np.stack([params[k] for params in output_params])
        else:
            to_save[k] = output_params[0][k]
    os.makedirs(f"./output/{exp}/{seq}", exist_ok=True)
    np.savez(f"./output/{exp}/{seq}/params", **to_save)


def farthest_point_sample(xyz, npoint):
    """
    Input:
        xyz: pointcloud data, [B, N, C]
        npoint: number of samples
    Return:
        centroids: sampled pointcloud index, [B, npoint]
    """
    device = xyz.device
    B, N, C = xyz.shape
    centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
    distance = torch.ones(B, N).to(device) * 1e10
    farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
    batch_indices = torch.arange(B, dtype=torch.long).to(device)
    for i in range(npoint):
        centroids[:, i] = farthest
        centroid = xyz[batch_indices, farthest, :].view(B, 1, C)
        dist = torch.sum((xyz - centroid) ** 2, -1)
        mask = dist < distance
        distance[mask] = dist[mask]
        farthest = torch.max(distance, -1)[1]
    return centroids

def quat2mat(q):
    norm = torch.sqrt(q[:, 0] * q[:, 0] + q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] + q[:, 3] * q[:, 3])
    q = q / norm[:, None]
    rot = torch.zeros((q.shape[0], 3, 3)).to(q.device)
    r = q[:, 0]
    x = q[:, 1]
    y = q[:, 2]
    z = q[:, 3]
    rot[:, 0, 0] = 1 - 2 * (y * y + z * z)
    rot[:, 0, 1] = 2 * (x * y - r * z)
    rot[:, 0, 2] = 2 * (x * z + r * y)
    rot[:, 1, 0] = 2 * (x * y + r * z)
    rot[:, 1, 1] = 1 - 2 * (x * x + z * z)
    rot[:, 1, 2] = 2 * (y * z - r * x)
    rot[:, 2, 0] = 2 * (x * z - r * y)
    rot[:, 2, 1] = 2 * (y * z + r * x)
    rot[:, 2, 2] = 1 - 2 * (x * x + y * y)
    return rot

def rot2quat(rot):
    # Preallocate quaternion tensor
    q = torch.zeros((rot.shape[0], 4)).to(rot.device)
    
    # Compute quaternion components
    q[:, 0] = 0.5 * torch.sqrt(1 + rot[:, 0, 0] + rot[:, 1, 1] + rot[:, 2, 2])
    q[:, 1] = (rot[:, 2, 1] - rot[:, 1, 2]) / (4 * q[:, 0])
    q[:, 2] = (rot[:, 0, 2] - rot[:, 2, 0]) / (4 * q[:, 0])
    q[:, 3] = (rot[:, 1, 0] - rot[:, 0, 1]) / (4 * q[:, 0])
    
    return q