File size: 3,259 Bytes
f96995c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import cv2
import argparse
import time
import numpy as np
import torch
import open3d as o3d
from PIL import Image

from modules import RobotEnv, BimanualRobotEnv
from utils.pcd_utils import get_tabletop_points, visualize_o3d

def construct_goal_from_perception():
    use_robot = True

    exposure_time = 10
    env = RobotEnv(
        WH=[848, 480],
        obs_fps=5,
        n_obs_steps=2,
        use_robot=use_robot,
        speed=100,
    )

    try:
        env.start(exposure_time=exposure_time)
        if use_robot:
            env.reset_robot()
        print('env started')
        time.sleep(exposure_time)
        print('start recording')

        env.calibrate(re_calibrate=False)

        obs = env.get_obs(get_color=True, get_depth=True)
        intr_list = env.get_intrinsics()
        R_list, t_list = env.get_extrinsics()
        bbox = env.get_bbox()

        rgb_list = []
        depth_list = []
        for i in range(4):
            rgb = obs[f'color_{i}'][-1]
            depth = obs[f'depth_{i}'][-1]
            rgb_list.append(rgb)
            depth_list.append(depth)

        pcd = get_tabletop_points(rgb_list, depth_list, R_list, t_list, intr_list, bbox)

        visualize_o3d([pcd])
        o3d.io.write_point_cloud("vis_real_world/target.pcd", pcd)

    finally:
        env.stop()
        print('env stopped')


def calibrate(use_robot=True, reset_robot=True, wrist=None):
    exposure_time = 5
    env = RobotEnv(
        use_camera=True,
        WH=[1280, 720],
        obs_fps=5,
        n_obs_steps=2,
        use_robot=use_robot,
        speed=100,
        wrist=wrist,
    )

    try:
        env.start(exposure_time=exposure_time)
        if use_robot and reset_robot:
            env.reset_robot()
        print('env started')
        time.sleep(exposure_time)
        print('start recording')

        env.calibrate(re_calibrate=True)
    
    finally:
        env.stop()
        print('env stopped')


def calibrate_bimanual(reset_robot=True):

    exposure_time = 5
    env = BimanualRobotEnv(
        WH=[1280, 720],
        obs_fps=5,
        n_obs_steps=2,
        speed=100,
        gripper_enable=True,
    )

    try:
        env.start(exposure_time=exposure_time)
        if reset_robot:
            env.reset_robot()
        print('env started')
        time.sleep(exposure_time)
        print('start recording')

        env.calibrate(re_calibrate=True)
    
    finally:
        env.stop()
        print('env stopped')


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--calibrate", action="store_true")
    parser.add_argument("--calibrate_bimanual", action="store_true")
    parser.add_argument("--calibrate_fixed", action="store_true")
    parser.add_argument("--construct_goal", action="store_true")
    parser.add_argument("--examine_points", action="store_true")
    args = parser.parse_args()
    if args.calibrate:
        calibrate(reset_robot=False)
    elif args.calibrate_bimanual:
        calibrate_bimanual(reset_robot=False)
    elif args.calibrate_fixed:  # only calibrate fixed cameras
        calibrate(use_robot=False)
    elif args.construct_goal:
        construct_goal_from_perception()
    else:
        print("No arguments provided")