Spaces:
Running
Running
| import argparse | |
| import json | |
| import os | |
| from glob import glob | |
| from mmengine.config import Config | |
| from torch.utils.tensorboard import SummaryWriter | |
| def parse_args(training=False): | |
| parser = argparse.ArgumentParser() | |
| # model config | |
| parser.add_argument("config", help="model config file path") | |
| parser.add_argument("--seed", default=42, type=int, help="generation seed") | |
| parser.add_argument("--ckpt-path", type=str, help="path to model ckpt; will overwrite cfg.ckpt_path if specified") | |
| parser.add_argument("--batch-size", default=None, type=int, help="batch size") | |
| # ====================================================== | |
| # Inference | |
| # ====================================================== | |
| if not training: | |
| # prompt | |
| parser.add_argument("--prompt-path", default=None, type=str, help="path to prompt txt file") | |
| parser.add_argument("--save-dir", default=None, type=str, help="path to save generated samples") | |
| # hyperparameters | |
| parser.add_argument("--num-sampling-steps", default=None, type=int, help="sampling steps") | |
| parser.add_argument("--cfg-scale", default=None, type=float, help="balance between cond & uncond") | |
| else: | |
| parser.add_argument("--wandb", default=None, type=bool, help="enable wandb") | |
| parser.add_argument("--load", default=None, type=str, help="path to continue training") | |
| parser.add_argument("--data-path", default=None, type=str, help="path to data csv") | |
| return parser.parse_args() | |
| def merge_args(cfg, args, training=False): | |
| if args.ckpt_path is not None: | |
| cfg.model["from_pretrained"] = args.ckpt_path | |
| args.ckpt_path = None | |
| if not training: | |
| if args.cfg_scale is not None: | |
| cfg.scheduler["cfg_scale"] = args.cfg_scale | |
| args.cfg_scale = None | |
| if "multi_resolution" not in cfg: | |
| cfg["multi_resolution"] = False | |
| for k, v in vars(args).items(): | |
| if k in cfg and v is not None: | |
| cfg[k] = v | |
| return cfg | |
| def parse_configs(training=False): | |
| args = parse_args(training) | |
| cfg = Config.fromfile(args.config) | |
| cfg = merge_args(cfg, args, training) | |
| return cfg | |
| def create_experiment_workspace(cfg): | |
| """ | |
| This function creates a folder for experiment tracking. | |
| Args: | |
| args: The parsed arguments. | |
| Returns: | |
| exp_dir: The path to the experiment folder. | |
| """ | |
| # Make outputs folder (holds all experiment subfolders) | |
| os.makedirs(cfg.outputs, exist_ok=True) | |
| experiment_index = len(glob(f"{cfg.outputs}/*")) | |
| # Create an experiment folder | |
| model_name = cfg.model["type"].replace("/", "-") | |
| exp_name = f"{experiment_index:03d}-F{cfg.num_frames}S{cfg.frame_interval}-{model_name}" | |
| exp_dir = f"{cfg.outputs}/{exp_name}" | |
| os.makedirs(exp_dir, exist_ok=True) | |
| return exp_name, exp_dir | |
| def save_training_config(cfg, experiment_dir): | |
| with open(f"{experiment_dir}/config.txt", "w") as f: | |
| json.dump(cfg, f, indent=4) | |
| def create_tensorboard_writer(exp_dir): | |
| tensorboard_dir = f"{exp_dir}/tensorboard" | |
| os.makedirs(tensorboard_dir, exist_ok=True) | |
| writer = SummaryWriter(tensorboard_dir) | |
| return writer | |