Update app.py
Browse files
app.py
CHANGED
@@ -32,157 +32,121 @@ def initialize_gemini(api_key: str):
|
|
32 |
)
|
33 |
return model
|
34 |
|
35 |
-
def
|
36 |
"""
|
37 |
-
|
|
|
|
|
|
|
38 |
"""
|
39 |
company_info = ""
|
|
|
40 |
|
41 |
-
# Create search queries
|
42 |
-
|
43 |
-
f"what is {company_name} company",
|
44 |
-
f"{company_name} company about us",
|
45 |
-
f"{company_name}
|
46 |
-
f"{company_name} company profile",
|
47 |
-
f"what does {company_name} company do"
|
48 |
]
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
try:
|
55 |
-
# Search with each query
|
56 |
-
search_results = search(query, stop=2, pause=2)
|
57 |
-
|
58 |
-
for result_url in search_results:
|
59 |
-
try:
|
60 |
-
response = requests.get(result_url, timeout=5)
|
61 |
-
if response.status_code == 200:
|
62 |
-
# Extract text from paragraphs
|
63 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
64 |
-
paragraphs = soup.find_all('p')
|
65 |
-
|
66 |
-
# Get text from first 3 substantial paragraphs
|
67 |
-
for p in paragraphs:
|
68 |
-
text = p.get_text().strip()
|
69 |
-
if len(text) > 100 and company_name.lower() in text.lower():
|
70 |
-
company_info += text + "\n\n"
|
71 |
-
if len(company_info) > 500:
|
72 |
-
break
|
73 |
-
|
74 |
-
if len(company_info) > 500:
|
75 |
-
break
|
76 |
-
except Exception as e:
|
77 |
-
print(f" β οΈ Error fetching {result_url}: {e}")
|
78 |
-
|
79 |
-
if len(company_info) > 500:
|
80 |
-
break
|
81 |
-
except Exception as e:
|
82 |
-
print(f" β οΈ Error with query '{query}': {e}")
|
83 |
-
continue
|
84 |
-
|
85 |
-
return company_info.strip()
|
86 |
-
except Exception as e:
|
87 |
-
print(f"β Error searching for company info: {str(e)}")
|
88 |
-
return ""
|
89 |
-
|
90 |
-
def google_search_naics(company_name: str) -> List[str]:
|
91 |
-
"""
|
92 |
-
Find potential NAICS codes for a company using multiple targeted Google searches
|
93 |
-
Uses more specific search queries to improve results
|
94 |
-
"""
|
95 |
-
naics_codes = set()
|
96 |
-
|
97 |
-
# Create multiple search queries for better results
|
98 |
-
queries = [
|
99 |
-
f"2022 NAICS code for {company_name}",
|
100 |
-
f"NAICS 2022 classification for {company_name}",
|
101 |
-
f"{company_name} business NAICS 2022 code",
|
102 |
-
f"{company_name} industry NAICS code 2022",
|
103 |
-
f"what is {company_name} company NAICS code"
|
104 |
]
|
105 |
|
|
|
|
|
106 |
try:
|
107 |
-
print(f"
|
108 |
|
109 |
-
for query in
|
110 |
print(f" Query: {query}")
|
111 |
try:
|
112 |
-
# Search with each query
|
113 |
search_results = search(query, stop=3, pause=2)
|
114 |
|
115 |
for result_url in search_results:
|
116 |
try:
|
117 |
response = requests.get(result_url, timeout=5)
|
118 |
if response.status_code == 200:
|
119 |
-
# Extract
|
120 |
found_codes = re.findall(r'\b\d{6}\b', response.text)
|
121 |
-
naics_codes.update(found_codes)
|
122 |
-
|
123 |
-
# If we find codes, print them
|
124 |
if found_codes:
|
|
|
125 |
print(f" Found codes in {result_url}: {found_codes}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
except Exception as e:
|
127 |
print(f" β οΈ Error fetching {result_url}: {e}")
|
|
|
|
|
|
|
|
|
|
|
128 |
except Exception as e:
|
129 |
print(f" β οΈ Error with query '{query}': {e}")
|
130 |
continue
|
131 |
|
132 |
-
# Return
|
133 |
-
return list(naics_codes)[:10]
|
134 |
except Exception as e:
|
135 |
-
print(f"β Error
|
136 |
-
return []
|
137 |
|
138 |
-
def
|
139 |
"""
|
140 |
-
Use Gemini AI to determine the most appropriate NAICS code
|
141 |
-
First provides reasoning, then returns the NAICS code and explanation
|
142 |
"""
|
143 |
try:
|
144 |
print("π€ AI is analyzing NAICS classification...")
|
145 |
|
146 |
-
#
|
147 |
-
company_info = google_search_company_info(company_name)
|
148 |
if company_info:
|
149 |
-
print(f"π Found additional company information:\n{company_info[:200]}...")
|
150 |
-
# Add the found information to the context
|
151 |
if context:
|
152 |
-
|
153 |
else:
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
159 |
prompt = f"""
|
160 |
-
You are a NAICS code classification expert. Based on the company information provided and
|
161 |
|
162 |
Company Name: {company_name}
|
163 |
-
|
164 |
|
165 |
-
NAICS Code Candidates
|
166 |
|
167 |
-
First,
|
168 |
-
|
169 |
-
2. Then explain which industry classification best matches this company based on the name and context provided.
|
170 |
-
3. Finally, select the single most appropriate NAICS code from the candidates, or suggest a different one if none match.
|
171 |
|
172 |
Your response should be in this format:
|
173 |
-
|
174 |
-
REASONING: [Your detailed reasoning about why the chosen industry classification is most appropriate for this company]
|
175 |
NAICS_CODE: [6-digit NAICS code]
|
176 |
"""
|
177 |
-
# If no candidates were found from Google search
|
178 |
else:
|
179 |
prompt = f"""
|
180 |
You are a NAICS code classification expert. Based on the company information provided, determine the most appropriate NAICS code.
|
181 |
|
182 |
Company Name: {company_name}
|
183 |
-
|
184 |
|
185 |
-
|
186 |
Consider standard business classifications and determine the most appropriate category.
|
187 |
Then provide the single most appropriate 6-digit NAICS code.
|
188 |
|
@@ -196,12 +160,6 @@ NAICS_CODE: [6-digit NAICS code]
|
|
196 |
# Create result dictionary
|
197 |
result = {}
|
198 |
|
199 |
-
# Extract research if available
|
200 |
-
if "RESEARCH:" in response_text:
|
201 |
-
research_match = re.search(r'RESEARCH:(.*?)REASONING:', response_text, re.DOTALL | re.IGNORECASE)
|
202 |
-
if research_match:
|
203 |
-
result["research"] = research_match.group(1).strip()
|
204 |
-
|
205 |
# Extract reasoning
|
206 |
reasoning_match = re.search(r'REASONING:(.*?)NAICS_CODE:', response_text, re.DOTALL | re.IGNORECASE)
|
207 |
result["reasoning"] = reasoning_match.group(1).strip() if reasoning_match else "No reasoning provided."
|
@@ -225,15 +183,7 @@ NAICS_CODE: [6-digit NAICS code]
|
|
225 |
|
226 |
def find_naics_code(company_name: str, context: str = "", api_key: Optional[str] = None) -> Dict:
|
227 |
"""
|
228 |
-
Core function to find NAICS code for a company
|
229 |
-
|
230 |
-
Args:
|
231 |
-
company_name: Name of the company
|
232 |
-
context: Brief description of the company (optional)
|
233 |
-
api_key: Google Gemini API key (if None, will try to get from environment variable)
|
234 |
-
|
235 |
-
Returns:
|
236 |
-
Dictionary with NAICS code, reasoning, and optional research
|
237 |
"""
|
238 |
# Get API key from environment if not provided
|
239 |
if not api_key:
|
@@ -255,20 +205,16 @@ def find_naics_code(company_name: str, context: str = "", api_key: Optional[str]
|
|
255 |
"reasoning": f"Error: {str(e)}"
|
256 |
}
|
257 |
|
258 |
-
#
|
259 |
-
naics_candidates =
|
260 |
|
261 |
-
# Get
|
262 |
-
|
263 |
-
print("No NAICS codes found from Google search.")
|
264 |
-
result = get_naics_classification(model, company_name, context, [])
|
265 |
-
else:
|
266 |
-
print(f"Found {len(naics_candidates)} NAICS candidates: {naics_candidates}")
|
267 |
-
result = get_naics_classification(model, company_name, context, naics_candidates)
|
268 |
|
269 |
# Add metadata
|
270 |
result["company_name"] = company_name
|
271 |
result["context"] = context
|
|
|
272 |
result["candidates"] = naics_candidates
|
273 |
|
274 |
return result
|
@@ -280,7 +226,7 @@ def create_gradio_interface():
|
|
280 |
|
281 |
with gr.Blocks(title="NAICS Code Finder") as demo:
|
282 |
gr.Markdown("# NAICS Code Finder")
|
283 |
-
gr.Markdown("Enter a company name to find its appropriate NAICS code. The tool will search for information about the company and
|
284 |
|
285 |
with gr.Row():
|
286 |
with gr.Column():
|
@@ -304,69 +250,55 @@ def create_gradio_interface():
|
|
304 |
naics_output = gr.Markdown(label="NAICS Code")
|
305 |
with gr.Accordion("Company Information", open=False):
|
306 |
company_info_output = gr.Markdown()
|
307 |
-
with gr.Accordion("NAICS Codes Research", open=False):
|
308 |
-
research_output = gr.Markdown()
|
309 |
with gr.Accordion("Classification Reasoning", open=True):
|
310 |
reasoning_output = gr.Markdown()
|
311 |
|
312 |
# Functions for the interface
|
313 |
def process_company(company_name, company_description, api_key):
|
314 |
if not company_name:
|
315 |
-
return "Please enter a company name", "", "", ""
|
316 |
|
317 |
# Use API key from input or environment
|
318 |
key_to_use = api_key if api_key else os.environ.get('GEMINI_API_KEY')
|
319 |
if not key_to_use:
|
320 |
-
return "No API key provided. Please enter your Gemini API key.", "", "", ""
|
321 |
|
322 |
-
status_md = "π Searching for company information...\n\n"
|
323 |
-
yield status_md, "", "", ""
|
324 |
-
|
325 |
-
# Get company info first
|
326 |
-
company_info = google_search_company_info(company_name)
|
327 |
-
if company_info:
|
328 |
-
company_info_md = f"## Information found about {company_name}\n\n{company_info}"
|
329 |
-
status_md += "β
Found company information\n\n"
|
330 |
-
else:
|
331 |
-
company_info_md = f"No detailed information found for {company_name}"
|
332 |
-
status_md += "β οΈ No company information found\n\n"
|
333 |
-
|
334 |
-
yield status_md, "", company_info_md, "", ""
|
335 |
-
|
336 |
-
# Get NAICS candidates
|
337 |
-
status_md += "π Searching for NAICS codes...\n\n"
|
338 |
-
yield status_md, "", company_info_md, "", ""
|
339 |
|
340 |
# Run the core functionality
|
341 |
result = find_naics_code(company_name, company_description, key_to_use)
|
342 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
if "candidates" in result and result["candidates"]:
|
344 |
-
status_md += f"β
Found {len(result['candidates'])} potential NAICS codes\n\n"
|
345 |
else:
|
346 |
status_md += "β οΈ No specific NAICS codes found in search results\n\n"
|
347 |
|
348 |
status_md += "π€ Analyzing classification...\n\n"
|
349 |
-
yield status_md, "", company_info_md, ""
|
350 |
|
351 |
# Format the NAICS code output
|
352 |
naics_code_md = f"## NAICS Code: {result['naics_code']}"
|
353 |
-
|
354 |
-
# Format the research output
|
355 |
-
research_md = ""
|
356 |
-
if "research" in result and result["research"]:
|
357 |
-
research_md = f"## Research on NAICS Codes\n\n{result['research']}"
|
358 |
|
359 |
# Format the reasoning output
|
360 |
reasoning_md = f"## Analysis\n\n{result['reasoning']}"
|
361 |
|
362 |
status_md += "β
Classification complete!"
|
363 |
|
364 |
-
return status_md, naics_code_md, company_info_md,
|
365 |
|
366 |
submit_btn.click(
|
367 |
process_company,
|
368 |
inputs=[company_name, company_description, api_key],
|
369 |
-
outputs=[status_output, naics_output, company_info_output,
|
370 |
)
|
371 |
|
372 |
gr.Examples(
|
|
|
32 |
)
|
33 |
return model
|
34 |
|
35 |
+
def combined_google_search(company_name: str) -> Tuple[str, List[str]]:
|
36 |
"""
|
37 |
+
Combined search function that finds both company information and NAICS codes
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
Tuple containing (company_info, naics_code_candidates)
|
41 |
"""
|
42 |
company_info = ""
|
43 |
+
naics_codes = set()
|
44 |
|
45 |
+
# Create comprehensive search queries
|
46 |
+
info_queries = [
|
47 |
+
f"what is {company_name} company business industry sector",
|
48 |
+
f"{company_name} company about us business description",
|
49 |
+
f"{company_name} company profile what they do"
|
|
|
|
|
50 |
]
|
51 |
|
52 |
+
naics_queries = [
|
53 |
+
f"2022 NAICS code for {company_name} company",
|
54 |
+
f"{company_name} NAICS 2022 classification",
|
55 |
+
f"what is {company_name} industry NAICS code 2022"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
]
|
57 |
|
58 |
+
all_queries = info_queries + naics_queries
|
59 |
+
|
60 |
try:
|
61 |
+
print(f"π Searching for information about '{company_name}'...")
|
62 |
|
63 |
+
for query in all_queries:
|
64 |
print(f" Query: {query}")
|
65 |
try:
|
66 |
+
# Search with each query
|
67 |
search_results = search(query, stop=3, pause=2)
|
68 |
|
69 |
for result_url in search_results:
|
70 |
try:
|
71 |
response = requests.get(result_url, timeout=5)
|
72 |
if response.status_code == 200:
|
73 |
+
# Extract NAICS codes
|
74 |
found_codes = re.findall(r'\b\d{6}\b', response.text)
|
|
|
|
|
|
|
75 |
if found_codes:
|
76 |
+
naics_codes.update(found_codes)
|
77 |
print(f" Found codes in {result_url}: {found_codes}")
|
78 |
+
|
79 |
+
# Extract company information
|
80 |
+
if len(company_info) < 1000: # Only if we need more info
|
81 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
82 |
+
paragraphs = soup.find_all('p')
|
83 |
+
|
84 |
+
# Get text from paragraphs that mention the company
|
85 |
+
for p in paragraphs:
|
86 |
+
text = p.get_text().strip()
|
87 |
+
if len(text) > 80 and company_name.lower() in text.lower():
|
88 |
+
company_info += text + "\n\n"
|
89 |
+
if len(company_info) > 1000:
|
90 |
+
break
|
91 |
+
|
92 |
except Exception as e:
|
93 |
print(f" β οΈ Error fetching {result_url}: {e}")
|
94 |
+
|
95 |
+
# If we have enough information, move to the next query
|
96 |
+
if len(company_info) > 1000 and len(naics_codes) > 0:
|
97 |
+
break
|
98 |
+
|
99 |
except Exception as e:
|
100 |
print(f" β οΈ Error with query '{query}': {e}")
|
101 |
continue
|
102 |
|
103 |
+
# Return company info and NAICS codes
|
104 |
+
return company_info.strip(), list(naics_codes)[:10]
|
105 |
except Exception as e:
|
106 |
+
print(f"β Error during Google search: {str(e)}")
|
107 |
+
return "", []
|
108 |
|
109 |
+
def analyze_naics_code(model, company_name: str, context: str, company_info: str, naics_candidates: List[str]) -> dict:
|
110 |
"""
|
111 |
+
Use Gemini AI to determine the most appropriate NAICS code
|
|
|
112 |
"""
|
113 |
try:
|
114 |
print("π€ AI is analyzing NAICS classification...")
|
115 |
|
116 |
+
# Combine provided context with discovered company info
|
|
|
117 |
if company_info:
|
|
|
|
|
118 |
if context:
|
119 |
+
combined_context = f"{context}\n\nAdditional information found online:\n{company_info}"
|
120 |
else:
|
121 |
+
combined_context = f"Information found online:\n{company_info}"
|
122 |
+
else:
|
123 |
+
combined_context = context
|
124 |
+
|
125 |
+
# Create the prompt based on whether we have candidate codes
|
126 |
+
if naics_candidates:
|
127 |
prompt = f"""
|
128 |
+
You are a NAICS code classification expert. Based on the company information provided and any NAICS code candidates found from online research, determine the most appropriate NAICS code.
|
129 |
|
130 |
Company Name: {company_name}
|
131 |
+
Information about the company: {combined_context}
|
132 |
|
133 |
+
NAICS Code Candidates found in research: {naics_candidates}
|
134 |
|
135 |
+
First, analyze what these NAICS codes represent and which industry this company belongs to based on the information provided.
|
136 |
+
Then select the single most appropriate 6-digit NAICS code.
|
|
|
|
|
137 |
|
138 |
Your response should be in this format:
|
139 |
+
REASONING: [Your detailed reasoning about why the chosen industry classification is most appropriate for this company, including what business activities it performs]
|
|
|
140 |
NAICS_CODE: [6-digit NAICS code]
|
141 |
"""
|
|
|
142 |
else:
|
143 |
prompt = f"""
|
144 |
You are a NAICS code classification expert. Based on the company information provided, determine the most appropriate NAICS code.
|
145 |
|
146 |
Company Name: {company_name}
|
147 |
+
Information about the company: {combined_context}
|
148 |
|
149 |
+
Analyze what industry this company likely belongs to based on its name and the provided information.
|
150 |
Consider standard business classifications and determine the most appropriate category.
|
151 |
Then provide the single most appropriate 6-digit NAICS code.
|
152 |
|
|
|
160 |
# Create result dictionary
|
161 |
result = {}
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
# Extract reasoning
|
164 |
reasoning_match = re.search(r'REASONING:(.*?)NAICS_CODE:', response_text, re.DOTALL | re.IGNORECASE)
|
165 |
result["reasoning"] = reasoning_match.group(1).strip() if reasoning_match else "No reasoning provided."
|
|
|
183 |
|
184 |
def find_naics_code(company_name: str, context: str = "", api_key: Optional[str] = None) -> Dict:
|
185 |
"""
|
186 |
+
Core function to find NAICS code for a company
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
"""
|
188 |
# Get API key from environment if not provided
|
189 |
if not api_key:
|
|
|
205 |
"reasoning": f"Error: {str(e)}"
|
206 |
}
|
207 |
|
208 |
+
# Run the combined search
|
209 |
+
company_info, naics_candidates = combined_google_search(company_name)
|
210 |
|
211 |
+
# Get AI analysis
|
212 |
+
result = analyze_naics_code(model, company_name, context, company_info, naics_candidates)
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
# Add metadata
|
215 |
result["company_name"] = company_name
|
216 |
result["context"] = context
|
217 |
+
result["company_info"] = company_info
|
218 |
result["candidates"] = naics_candidates
|
219 |
|
220 |
return result
|
|
|
226 |
|
227 |
with gr.Blocks(title="NAICS Code Finder") as demo:
|
228 |
gr.Markdown("# NAICS Code Finder")
|
229 |
+
gr.Markdown("Enter a company name to find its appropriate NAICS code. The tool will search for information about the company and find the most appropriate classification.")
|
230 |
|
231 |
with gr.Row():
|
232 |
with gr.Column():
|
|
|
250 |
naics_output = gr.Markdown(label="NAICS Code")
|
251 |
with gr.Accordion("Company Information", open=False):
|
252 |
company_info_output = gr.Markdown()
|
|
|
|
|
253 |
with gr.Accordion("Classification Reasoning", open=True):
|
254 |
reasoning_output = gr.Markdown()
|
255 |
|
256 |
# Functions for the interface
|
257 |
def process_company(company_name, company_description, api_key):
|
258 |
if not company_name:
|
259 |
+
return "Please enter a company name", "", "", ""
|
260 |
|
261 |
# Use API key from input or environment
|
262 |
key_to_use = api_key if api_key else os.environ.get('GEMINI_API_KEY')
|
263 |
if not key_to_use:
|
264 |
+
return "No API key provided. Please enter your Gemini API key.", "", "", ""
|
265 |
|
266 |
+
status_md = "π Searching for company information and NAICS codes...\n\n"
|
267 |
+
yield status_md, "", "", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
# Run the core functionality
|
270 |
result = find_naics_code(company_name, company_description, key_to_use)
|
271 |
|
272 |
+
# Update status based on results
|
273 |
+
if "company_info" in result and result["company_info"]:
|
274 |
+
status_md += "β
Found company information\n\n"
|
275 |
+
company_info_md = f"## Information found about {company_name}\n\n{result['company_info']}"
|
276 |
+
else:
|
277 |
+
status_md += "β οΈ Limited company information found\n\n"
|
278 |
+
company_info_md = f"Limited information found for {company_name}"
|
279 |
+
|
280 |
if "candidates" in result and result["candidates"]:
|
281 |
+
status_md += f"β
Found {len(result['candidates'])} potential NAICS codes: {', '.join(result['candidates'])}\n\n"
|
282 |
else:
|
283 |
status_md += "β οΈ No specific NAICS codes found in search results\n\n"
|
284 |
|
285 |
status_md += "π€ Analyzing classification...\n\n"
|
286 |
+
yield status_md, "", company_info_md, ""
|
287 |
|
288 |
# Format the NAICS code output
|
289 |
naics_code_md = f"## NAICS Code: {result['naics_code']}"
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
# Format the reasoning output
|
292 |
reasoning_md = f"## Analysis\n\n{result['reasoning']}"
|
293 |
|
294 |
status_md += "β
Classification complete!"
|
295 |
|
296 |
+
return status_md, naics_code_md, company_info_md, reasoning_md
|
297 |
|
298 |
submit_btn.click(
|
299 |
process_company,
|
300 |
inputs=[company_name, company_description, api_key],
|
301 |
+
outputs=[status_output, naics_output, company_info_output, reasoning_output]
|
302 |
)
|
303 |
|
304 |
gr.Examples(
|