kundaja-green commited on
Commit
81ae4f9
·
1 Parent(s): 170bc28

Final configuration: Link all 4 model repos via README.md

Browse files
Files changed (2) hide show
  1. README.md +13 -57
  2. start.sh +25 -18
README.md CHANGED
@@ -1,10 +1,19 @@
1
  ---
2
- license: apache-2.0
3
- title: wan lora trainer
4
  sdk: docker
 
 
5
  models:
6
- - Wan-AI/Wan2.1-I2V-14B-720P
 
 
 
7
  ---
 
 
 
 
 
8
  ---
9
  # Simple GUI for [Musubi Tuner](https://github.com/kohya-ss/musubi-tuner) (Wan 2.1 models only)
10
 
@@ -16,57 +25,4 @@ models:
16
 
17
  - To open the GUI just run `Start_Wan_GUI.bat`.
18
  - All settings can be saved and loaded using the "**Load Settings**" and "**Save Setting**" buttons.
19
- - More info about settings see in [Wan2.1 documentation](./docs/wan.md), [Advanced Configuration](./docs/advanced_config.md#fp8-quantization), [Dataset configuration guide](./dataset/dataset_config.md).
20
-
21
-
22
- ![Preview](docs/Preview.png)
23
-
24
-
25
-
26
-
27
-
28
- # Miscellaneous
29
-
30
-
31
- ## SageAttention Installation
32
-
33
- sdbsd has provided a Windows-compatible SageAttention implementation and pre-built wheels here: https://github.com/sdbds/SageAttention-for-windows. After installing triton, if your Python, PyTorch, and CUDA versions match, you can download and install the pre-built wheel from the [Releases](https://github.com/sdbds/SageAttention-for-windows/releases) page. Thanks to sdbsd for this contribution.
34
-
35
- For reference, the build and installation instructions are as follows. You may need to update Microsoft Visual C++ Redistributable to the latest version.
36
-
37
- 1. Download and install triton 3.1.0 wheel matching your Python version from [here](https://github.com/woct0rdho/triton-windows/releases/tag/v3.1.0-windows.post5).
38
-
39
- 2. Install Microsoft Visual Studio 2022 or Build Tools for Visual Studio 2022, configured for C++ builds.
40
-
41
- 3. Clone the SageAttention repository in your preferred directory:
42
- ```shell
43
- git clone https://github.com/thu-ml/SageAttention.git
44
- ```
45
-
46
- You can skip step 4 by using the sdbsd repository mentioned above by `git clone https://github.com/sdbds/SageAttention-for-windows.git`.
47
-
48
- 4. Open `math.cuh` in the `SageAttention/csrc` folder and change `ushort` to `unsigned short` on lines 71 and 146, then save.
49
-
50
- 5. Open `x64 Native Tools Command Prompt for VS 2022` from the Start menu under Visual Studio 2022.
51
-
52
- 6. Activate your venv, navigate to the SageAttention folder, and run the following command. If you get a DISTUTILS not configured error, set `set DISTUTILS_USE_SDK=1` and try again:
53
- ```shell
54
- python setup.py install
55
- ```
56
-
57
- This completes the SageAttention installation.
58
-
59
- ### PyTorch version
60
-
61
- If you specify `torch` for `--attn_mode`, use PyTorch 2.5.1 or later (earlier versions may result in black videos).
62
-
63
- If you use an earlier version, use xformers or SageAttention.
64
-
65
-
66
- # License
67
-
68
- Code under the `hunyuan_model` directory is modified from [HunyuanVideo](https://github.com/Tencent/HunyuanVideo) and follows their license.
69
-
70
- Code under the `wan` directory is modified from [Wan2.1](https://github.com/Wan-Video/Wan2.1). The license is under the Apache License 2.0.
71
-
72
- Other code is under the Apache License 2.0. Some code is copied and modified from Diffusers.
 
1
  ---
2
+ title: Wan LoRA Trainer
 
3
  sdk: docker
4
+ # This links all four required model repositories.
5
+ # Each one will be mounted as a separate folder inside the Space.
6
  models:
7
+ - wan-video/wan2.1-i2v-14B-fp8-720p
8
+ - wan-video/wan2.1-vae
9
+ - wan-video/wan2.1-clip-xlm-roberta
10
+ - wan-video/wan2.1-t5-xxl
11
  ---
12
+
13
+ # Wan 2.1 LoRA Trainer
14
+
15
+ This Space runs the Wan 2.1 LoRA training script.
16
+ The required models are linked via the repository configuration above.
17
  ---
18
  # Simple GUI for [Musubi Tuner](https://github.com/kohya-ss/musubi-tuner) (Wan 2.1 models only)
19
 
 
25
 
26
  - To open the GUI just run `Start_Wan_GUI.bat`.
27
  - All settings can be saved and loaded using the "**Load Settings**" and "**Save Setting**" buttons.
28
+ - More info about settings see in [Wan2.1 documentation](./docs/wan.md), [Advanced Configuration](./docs/advanced_config.md#fp8-quantization), [Dataset configuration guide](./dataset/dataset_config.md).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
start.sh CHANGED
@@ -1,36 +1,43 @@
1
  #!/bin/bash
2
- # --- Final, Simplified Startup Script (v10) ---
3
 
4
  # Exit immediately if a command exits with a non-zero status.
5
  set -e
6
 
7
  echo "--- Startup Script Initialized ---"
8
- echo "--- Models are mounted by the Space. No downloads needed. ---"
9
 
10
- # The model path is the name of the mounted repository.
11
- MODEL_DIR="/Wan2.1-I2V-14B-720P"
12
-
13
- # The output will be saved to the persistent /data directory.
14
- # The training script will create the output subfolder if needed.
15
  OUTPUT_DIR="/data/output"
16
 
17
- echo "Using models from: $MODEL_DIR"
18
- echo "Saving output to: $OUTPUT_DIR"
 
 
 
19
 
20
- # Verify that the main model file exists before starting training
21
- if [ ! -f "$MODEL_DIR/wan2.1_i2v_720p_14B_fp8_e4m3fn.safetensors" ]; then
22
- echo "CRITICAL ERROR: Main model file not found. Check if the model repository is linked correctly in README.md. Exiting."
 
 
 
 
23
  exit 1
24
  fi
25
 
26
- # Run the training command.
27
- echo "--- Starting training... ---"
28
  accelerate launch wan_train_network.py \
29
  --task "i2v-14B" \
30
- --dit "$MODEL_DIR/wan2.1_i2v_720p_14B_fp8_e4m3fn.safetensors" \
31
- --vae "$MODEL_DIR/Wan2.1_VAE.pth" \
32
- --clip "$MODEL_DIR/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth" \
33
- --t5 "$MODEL_DIR/models_t5_umt5-xxl-enc-bf16.pth" \
34
  --dataset_config "dataset/testtoml.toml" \
35
  --output_dir "$OUTPUT_DIR" \
36
  --output_name "My_HF_Lora_v1" \
 
1
  #!/bin/bash
2
+ # --- Final Definitive Startup Script (v11) ---
3
 
4
  # Exit immediately if a command exits with a non-zero status.
5
  set -e
6
 
7
  echo "--- Startup Script Initialized ---"
8
+ echo "--- Models are mounted by the Space from multiple repositories. ---"
9
 
10
+ # --- Define the correct paths for each mounted model repository ---
11
+ DIT_DIR="/wan2.1-i2v-14B-fp8-720p"
12
+ VAE_DIR="/wan2.1-vae"
13
+ CLIP_DIR="/wan2.1-clip-xlm-roberta"
14
+ T5_DIR="/wan2.1-t5-xxl"
15
  OUTPUT_DIR="/data/output"
16
 
17
+ echo "DiT Path: $DIT_DIR"
18
+ echo "VAE Path: $VAE_DIR"
19
+ echo "CLIP Path: $CLIP_DIR"
20
+ echo "T5 Path: $T5_DIR"
21
+ echo "Output Path: $OUTPUT_DIR"
22
 
23
+ # For robust verification, check for the existence of one file from each repo
24
+ if [ ! -f "$DIT_DIR/wan2.1_i2v_720p_14B_fp8_e4m3fn.safetensors" ]; then
25
+ echo "CRITICAL ERROR: DiT model not found. Check README.md linking for 'wan-video/wan2.1-i2v-14B-fp8-720p'."
26
+ exit 1
27
+ fi
28
+ if [ ! -f "$VAE_DIR/Wan2.1_VAE.pth" ]; then
29
+ echo "CRITICAL ERROR: VAE model not found. Check README.md linking for 'wan-video/wan2.1-vae'."
30
  exit 1
31
  fi
32
 
33
+ echo "All model repositories appear to be linked correctly. Starting training..."
34
+ # Run the training command with the correct paths
35
  accelerate launch wan_train_network.py \
36
  --task "i2v-14B" \
37
+ --dit "$DIT_DIR/wan2.1_i2v_720p_14B_fp8_e4m3fn.safetensors" \
38
+ --vae "$VAE_DIR/Wan2.1_VAE.pth" \
39
+ --clip "$CLIP_DIR/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth" \
40
+ --t5 "$T5_DIR/models_t5_umt5-xxl-enc-bf16.pth" \
41
  --dataset_config "dataset/testtoml.toml" \
42
  --output_dir "$OUTPUT_DIR" \
43
  --output_name "My_HF_Lora_v1" \