Spaces:
Runtime error
Runtime error
File size: 40,731 Bytes
ebb79f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 |
import tkinter as tk
from tkinter import ttk, filedialog, messagebox, Menu
import subprocess
import threading
import json
import os
import sys
import signal
# Dark theme color scheme
BG_COLOR = "#2C3E50" # Main background (dark gray with blue tint)
FG_COLOR = "#ECF0F1" # Light text
ACCENT_COLOR = "#2980B9" # Blue accent for tabs
ENTRY_BG = "#1B2A38" # Entry field background (darker than main)
BUTTON_ACTIVE = "#1B2A38" # Active button background
BORDER_COLOR = "#333333" # Dark border color
ACTIVE_ENTRY_BG = "white" # Background color for active entry field
ACTIVE_ENTRY_FG = "black" # Text color for active entry field
class LoRATrainerGUI:
def __init__(self, master):
self.master = master
master.title("Wan 2.1 LoRA Trainer")
master.geometry("900x1024")
master.configure(bg=BG_COLOR)
self.current_process = None
self.training_thread = None
self.process_group_id = None
self.user_scrolled = False # Flag for manual console scrolling
# Initialize settings with default values, including conversion settings
self.settings = {
"DATASET_CONFIG": "dataset/dataset_example.toml",
"VAE_MODEL": "Models/Wan/Wan2.1_VAE.pth",
"CLIP_MODEL": "Models/Wan/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
"T5_MODEL": "Models/Wan/models_t5_umt5-xxl-enc-bf16.pth",
"DIT_MODEL": "Models/Wan/wan2.1_i2v_720p_14B_fp8_e4m3fn.safetensors",
"LORA_OUTPUT_DIR": "Output_LoRAs/",
"LORA_NAME": "My_Best_Lora_v1",
"MODEL_TYPE": "i2v-14B",
"FLOW_SHIFT": 3.0,
"LEARNING_RATE": 2e-5,
"LORA_LR_RATIO": 4,
"NETWORK_DIM": 32,
"NETWORK_ALPHA": 4,
"MAX_TRAIN_EPOCHS": 70,
"SAVE_EVERY_N_EPOCHS": 10,
"SEED": 1234,
"BLOCKS_SWAP": 16,
"RESUME_TRAINING": "",
"OPTIMIZER_TYPE": "adamw8bit",
"OPTIMIZER_ARGS": "",
"ATTENTION_MECHANISM": "none",
"LOGGING_DIR": "",
"LOG_WITH": "none",
"LOG_PREFIX": "",
"IMG_IN_TXT_IN_OFFLOADING": False,
"LR_SCHEDULER": "constant",
"LR_WARMUP_STEPS": "",
"LR_DECAY_STEPS": "",
"TIMESTEP_SAMPLING": "shift",
"DISCRETE_FLOW_SHIFT": "3.0",
"WEIGHTING_SCHEME": "none",
"METADATA_TITLE": "",
"METADATA_AUTHOR": "",
"METADATA_DESCRIPTION": "",
"METADATA_LICENSE": "",
"METADATA_TAGS": "",
"INPUT_LORA": "",
"OUTPUT_DIR": "",
"CONVERTED_LORA_NAME": "",
"FP8": True, # Default FP8 setting
"SCALED": False # Default Scaled setting
}
self.model_types = ["t2v-1.3B", "t2v-14B", "i2v-14B", "t2i-14B"]
self.optimizer_types = ["adamw", "adamw8bit", "adafactor", "torch.optim.AdamW", "bitsandbytes.optim.AdEMAMix8bit", "bitsandbytes.optim.PagedAdEMAMix8bit", "came"]
self.setup_styles()
# Create notebook and tabs
self.notebook = ttk.Notebook(master)
self.notebook.pack(fill=tk.BOTH, expand=True, padx=10, pady=10)
# Создание вкладок с привязкой события клика мыши
self.training_tab = ttk.Frame(self.notebook)
self.training_tab.bind("<Button-1>", self.remove_focus) # Привязка клика для снятия фокуса
self.notebook.add(self.training_tab, text="Training settings")
self.advanced_tab = ttk.Frame(self.notebook)
self.advanced_tab.bind("<Button-1>", self.remove_focus) # Привязка клика для снятия фокуса
self.notebook.add(self.advanced_tab, text="Advanced settings")
self.conversion_tab = ttk.Frame(self.notebook)
self.conversion_tab.bind("<Button-1>", self.remove_focus) # Привязка клика для снятия фокуса
self.notebook.add(self.conversion_tab, text="LoRA Conversion")
# Initialize tab contents
self.create_training_settings()
self.create_advanced_settings()
self.create_conversion_settings()
# Create context menu for copying console text
self.context_menu = Menu(self.master, tearoff=0)
self.context_menu.add_command(label="Copy", command=self.copy_selected_text)
def remove_focus(self, event):
"""Снимает фокус с активного виджета при клике по фону"""
self.master.focus_set()
def setup_styles(self):
"""Set up styles for dark theme"""
style = ttk.Style()
style.theme_use("clam")
style.configure(".", background=BG_COLOR, foreground=FG_COLOR)
style.configure("TFrame", background=BG_COLOR)
style.configure("TLabel", background=BG_COLOR, foreground=FG_COLOR)
style.configure(
"TButton",
background=BG_COLOR,
foreground=FG_COLOR,
bordercolor=BORDER_COLOR,
borderwidth=1,
focusthickness=3,
focuscolor=BG_COLOR,
padding=[5, 1]
)
style.map(
"TButton",
background=[("active", BUTTON_ACTIVE), ("pressed", BUTTON_ACTIVE)],
foreground=[("active", FG_COLOR), ("pressed", FG_COLOR)]
)
style.configure("TCheckbutton", background=BG_COLOR, foreground=FG_COLOR)
style.map("TCheckbutton", background=[("active", BG_COLOR)], foreground=[("active", FG_COLOR)])
style.configure("TNotebook", background=BG_COLOR, borderwidth=0)
style.configure("TNotebook.Tab", background=BG_COLOR, foreground=FG_COLOR, padding=[5, 2])
style.map("TNotebook.Tab", background=[("selected", ACCENT_COLOR)], foreground=[("selected", FG_COLOR)])
style.configure(
"TEntry",
fieldbackground=ENTRY_BG,
foreground=FG_COLOR,
bordercolor=BORDER_COLOR
)
style.map("TEntry",
fieldbackground=[("focus", ACTIVE_ENTRY_BG)],
foreground=[("focus", ACTIVE_ENTRY_FG)]
)
style.configure(
"TCombobox",
fieldbackground=ENTRY_BG,
background=BG_COLOR,
foreground=FG_COLOR,
bordercolor=BORDER_COLOR
)
style.map("TCombobox",
fieldbackground=[("focus", ACTIVE_ENTRY_BG), ("readonly", ENTRY_BG), ("!disabled", ENTRY_BG)],
foreground=[("focus", ACTIVE_ENTRY_FG), ("readonly", FG_COLOR), ("!disabled", FG_COLOR)],
selectbackground=[("readonly", ENTRY_BG), ("!disabled", ENTRY_BG)],
selectforeground=[("readonly", FG_COLOR), ("!disabled", FG_COLOR)]
)
style.configure(
"Vertical.TScrollbar",
background=ENTRY_BG,
troughcolor=BG_COLOR,
bordercolor=BORDER_COLOR,
arrowcolor=FG_COLOR,
darkcolor=BG_COLOR,
lightcolor=BG_COLOR
)
style.map(
"Vertical.TScrollbar",
background=[("active", BUTTON_ACTIVE), ("pressed", BUTTON_ACTIVE)]
)
def create_training_settings(self):
row = 0
ttk.Label(self.training_tab, text="Training Settings", font=("Arial", 12, "bold")).grid(
row=row, column=0, columnspan=3, pady=(10, 10)
)
row += 1
button_frame_top = ttk.Frame(self.training_tab)
button_frame_top.grid(row=row, column=0, columnspan=3, pady=5)
ttk.Button(button_frame_top, text="Load Settings", command=self.load_settings).pack(side=tk.LEFT, padx=10)
ttk.Button(button_frame_top, text="Save Settings", command=self.save_settings).pack(side=tk.LEFT, padx=10)
row += 1
settings_config = [
("Dataset Config", "DATASET_CONFIG", "file"),
("VAE Model", "VAE_MODEL", "file"),
("Clip Model", "CLIP_MODEL", "file"),
("T5 Model", "T5_MODEL", "file"),
("Dit Model", "DIT_MODEL", "file"),
("LoRA Output Dir", "LORA_OUTPUT_DIR", "directory"),
("LoRA Name", "LORA_NAME", "text"),
("Model Type", "MODEL_TYPE", "dropdown"),
("Flow Shift", "FLOW_SHIFT", "float"),
("Learning Rate", "LEARNING_RATE", "float"),
("LoRA LR Ratio", "LORA_LR_RATIO", "int"),
("Network Dim", "NETWORK_DIM", "int"),
("Network Alpha", "NETWORK_ALPHA", "float"),
("Max Train Epochs", "MAX_TRAIN_EPOCHS", "int"),
("Save Every N Epochs", "SAVE_EVERY_N_EPOCHS", "int"),
("Seed", "SEED", "int"),
("Blocks Swap", "BLOCKS_SWAP", "int"),
("Resume Training", "RESUME_TRAINING", "directory"),
("Optimizer Type", "OPTIMIZER_TYPE", "dropdown"),
("Optimizer Args", "OPTIMIZER_ARGS", "text"),
]
self.entries = {}
for label_text, key, input_type in settings_config:
ttk.Label(self.training_tab, text=f"{label_text}:").grid(
row=row, column=0, sticky=tk.W, padx=5, pady=2
)
if input_type == "dropdown":
if key == "MODEL_TYPE":
var = tk.StringVar(value=self.settings[key])
self.entries[key] = ttk.Combobox(
self.training_tab, textvariable=var, values=self.model_types, state="readonly"
)
self.entries[key].current(self.model_types.index(self.settings[key]))
elif key == "OPTIMIZER_TYPE":
var = tk.StringVar(value=self.settings[key])
self.entries[key] = ttk.Combobox(
self.training_tab, textvariable=var, values=self.optimizer_types, state="readonly"
)
self.entries[key].current(self.optimizer_types.index(self.settings[key]))
else:
self.entries[key] = ttk.Entry(self.training_tab, width=40)
self.entries[key].insert(0, self.settings[key])
self.entries[key].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
if input_type in ["file", "directory"]:
ttk.Button(
self.training_tab,
text="Browse",
command=lambda k=key, t=input_type: self.browse_file(k, t)
).grid(row=row, column=2, sticky=tk.W, padx=5)
row += 1
# Weight Optimization Checkboxes
ttk.Label(self.training_tab, text="Weight Optimization:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.fp8_var = tk.BooleanVar(value=self.settings["FP8"])
self.scaled_var = tk.BooleanVar(value=self.settings["SCALED"])
self.fp8_check = ttk.Checkbutton(self.training_tab, text="FP8 Base", variable=self.fp8_var, command=self.toggle_scaled)
self.fp8_check.grid(row=row, column=1, sticky=tk.W, padx=5, pady=2)
self.scaled_check = ttk.Checkbutton(self.training_tab, text="FP8 Scaled", variable=self.scaled_var, state=tk.DISABLED if not self.fp8_var.get() else tk.NORMAL)
self.scaled_check.grid(row=row, column=1, sticky=tk.W, padx=100, pady=2)
row += 1
self.enable_cache_var = tk.BooleanVar(value=True)
ttk.Checkbutton(
self.training_tab, text="Enable Cache Preparation", variable=self.enable_cache_var
).grid(row=row, column=0, columnspan=3, pady=5)
row += 1
button_frame = ttk.Frame(self.training_tab)
button_frame.grid(row=row, column=0, columnspan=3, pady=10)
ttk.Button(button_frame, text="Start Training", command=self.start_training).pack(side=tk.LEFT, padx=10)
ttk.Button(button_frame, text="Stop Training", command=self.stop_training).pack(side=tk.LEFT, padx=10)
row += 1
self.console_frame = ttk.Frame(self.training_tab)
self.console_frame.grid(row=row, column=0, columnspan=3, padx=5, pady=5, sticky="nsew")
self.console_output = tk.Text(
self.console_frame,
height=10,
width=80,
bg=ENTRY_BG,
fg=FG_COLOR,
wrap="word",
state="disabled",
selectbackground="white",
selectforeground="black"
)
self.console_output.grid(row=0, column=0, sticky="nsew")
self.console_scrollbar = ttk.Scrollbar(
self.console_frame,
orient="vertical",
command=self.console_output.yview,
style="Vertical.TScrollbar"
)
self.console_scrollbar.grid(row=0, column=1, sticky="ns")
self.console_output.configure(yscrollcommand=self.console_scrollbar.set)
self.console_output.bind("<MouseWheel>", self.on_mousewheel)
self.console_output.bind("<Button-4>", self.on_mousewheel) # For Linux
self.console_output.bind("<Button-5>", self.on_mousewheel) # For Linux
self.console_output.bind("<Button-3>", self.show_context_menu)
self.training_tab.grid_rowconfigure(row, weight=1)
self.training_tab.grid_columnconfigure(1, weight=1)
self.console_frame.grid_rowconfigure(0, weight=1)
self.console_frame.grid_columnconfigure(0, weight=1)
def toggle_scaled(self):
"""Enable or disable the Scaled checkbox based on FP8 checkbox state"""
if self.fp8_var.get():
self.scaled_check.config(state=tk.NORMAL)
else:
self.scaled_check.config(state=tk.DISABLED)
self.scaled_var.set(False)
def create_advanced_settings(self):
row = 0
ttk.Label(self.advanced_tab, text="Advanced Settings", font=("Arial", 12, "bold")).grid(
row=row, column=0, columnspan=3, pady=(10, 10)
)
row += 1
# Attention Mechanism
ttk.Label(self.advanced_tab, text="Attention Mechanism:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.attention_var = tk.StringVar(value=self.settings["ATTENTION_MECHANISM"])
attention_options = ["none", "sdpa", "flash_attn", "sage_attn", "xformers", "flash3", "split_attn"]
self.entries["ATTENTION_MECHANISM"] = ttk.Combobox(self.advanced_tab, textvariable=self.attention_var, values=attention_options, state="readonly")
self.entries["ATTENTION_MECHANISM"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
# Logging
ttk.Label(self.advanced_tab, text="Logging Directory:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["LOGGING_DIR"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["LOGGING_DIR"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
ttk.Button(self.advanced_tab, text="Browse", command=lambda: self.browse_directory("LOGGING_DIR")).grid(row=row, column=2, sticky=tk.W, padx=5)
row += 1
ttk.Label(self.advanced_tab, text="Log With:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.log_with_var = tk.StringVar(value=self.settings["LOG_WITH"])
log_with_options = ["none", "tensorboard", "wandb", "all"]
self.entries["LOG_WITH"] = ttk.Combobox(self.advanced_tab, textvariable=self.log_with_var, values=log_with_options, state="readonly")
self.entries["LOG_WITH"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="Log Prefix:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["LOG_PREFIX"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["LOG_PREFIX"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
# Memory Management
self.img_in_txt_in_offloading_var = tk.BooleanVar(value=self.settings["IMG_IN_TXT_IN_OFFLOADING"])
ttk.Checkbutton(self.advanced_tab, text="Offload img_in and txt_in to CPU", variable=self.img_in_txt_in_offloading_var).grid(row=row, column=0, columnspan=3, pady=5)
self.entries["IMG_IN_TXT_IN_OFFLOADING"] = self.img_in_txt_in_offloading_var
row += 1
# Learning Rate Scheduler
ttk.Label(self.advanced_tab, text="LR Scheduler:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.lr_scheduler_var = tk.StringVar(value=self.settings["LR_SCHEDULER"])
lr_scheduler_options = ["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "adafactor"]
self.entries["LR_SCHEDULER"] = ttk.Combobox(self.advanced_tab, textvariable=self.lr_scheduler_var, values=lr_scheduler_options, state="readonly")
self.entries["LR_SCHEDULER"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="LR Warmup Steps:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["LR_WARMUP_STEPS"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["LR_WARMUP_STEPS"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="LR Decay Steps:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["LR_DECAY_STEPS"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["LR_DECAY_STEPS"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
# Timestep Sampling
ttk.Label(self.advanced_tab, text="Timestep Sampling:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.timestep_sampling_var = tk.StringVar(value=self.settings["TIMESTEP_SAMPLING"])
timestep_sampling_options = ["sigma", "uniform", "sigmoid", "shift"]
self.entries["TIMESTEP_SAMPLING"] = ttk.Combobox(self.advanced_tab, textvariable=self.timestep_sampling_var, values=timestep_sampling_options, state="readonly")
self.entries["TIMESTEP_SAMPLING"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="Discrete Flow Shift:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["DISCRETE_FLOW_SHIFT"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["DISCRETE_FLOW_SHIFT"].insert(0, self.settings["DISCRETE_FLOW_SHIFT"])
self.entries["DISCRETE_FLOW_SHIFT"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
# Weighting Scheme
ttk.Label(self.advanced_tab, text="Weighting Scheme:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.weighting_scheme_var = tk.StringVar(value=self.settings["WEIGHTING_SCHEME"])
weighting_scheme_options = ["logit_normal", "mode", "cosmap", "sigma_sqrt", "none"]
self.entries["WEIGHTING_SCHEME"] = ttk.Combobox(self.advanced_tab, textvariable=self.weighting_scheme_var, values=weighting_scheme_options, state="readonly")
self.entries["WEIGHTING_SCHEME"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
# Metadata
ttk.Label(self.advanced_tab, text="Metadata Title:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["METADATA_TITLE"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["METADATA_TITLE"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="Metadata Author:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["METADATA_AUTHOR"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["METADATA_AUTHOR"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="Metadata Description:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["METADATA_DESCRIPTION"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["METADATA_DESCRIPTION"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="Metadata License:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["METADATA_LICENSE"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["METADATA_LICENSE"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
ttk.Label(self.advanced_tab, text="Metadata Tags:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.entries["METADATA_TAGS"] = ttk.Entry(self.advanced_tab, width=40)
self.entries["METADATA_TAGS"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
row += 1
# Настройка столбца для автоматического расширения
self.advanced_tab.grid_columnconfigure(1, weight=1)
def create_conversion_settings(self):
"""Create the LoRA Conversion tab with input fields and buttons"""
row = 0
ttk.Label(self.conversion_tab, text="LoRA Conversion Settings", font=("Arial", 12, "bold")).grid(
row=row, column=0, columnspan=3, pady=(10, 10)
)
row += 1
# Input LoRA File
ttk.Label(self.conversion_tab, text="Input LoRA File:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.input_lora_entry = ttk.Entry(self.conversion_tab, width=40)
self.input_lora_entry.grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
self.input_lora_entry.insert(0, self.settings["INPUT_LORA"])
ttk.Button(self.conversion_tab, text="Browse", command=self.browse_input_lora).grid(row=row, column=2, sticky=tk.W, padx=5)
row += 1
# Output Directory
ttk.Label(self.conversion_tab, text="Output Directory:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.output_dir_entry = ttk.Entry(self.conversion_tab, width=40)
self.output_dir_entry.grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
self.output_dir_entry.insert(0, self.settings["OUTPUT_DIR"])
ttk.Button(self.conversion_tab, text="Browse", command=self.browse_output_dir).grid(row=row, column=2, sticky=tk.W, padx=5)
row += 1
# Converted LoRA Name
ttk.Label(self.conversion_tab, text="Converted LoRA Name:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
self.converted_lora_name_entry = ttk.Entry(self.conversion_tab, width=40)
self.converted_lora_name_entry.grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
self.converted_lora_name_entry.insert(0, self.settings["CONVERTED_LORA_NAME"])
row += 1
# Convert Button
ttk.Button(self.conversion_tab, text="Convert", command=self.convert_lora).grid(row=row, column=0, columnspan=3, pady=10)
# Configure grid to expand horizontally
self.conversion_tab.grid_columnconfigure(1, weight=1)
# Add entries to self.entries for saving/loading
self.entries["INPUT_LORA"] = self.input_lora_entry
self.entries["OUTPUT_DIR"] = self.output_dir_entry
self.entries["CONVERTED_LORA_NAME"] = self.converted_lora_name_entry
def show_context_menu(self, event):
"""Show context menu on right-click"""
try:
self.context_menu.tk_popup(event.x_root, event.y_root)
finally:
self.context_menu.grab_release()
def copy_selected_text(self):
"""Copy selected text to clipboard"""
if self.console_output.selection_get():
self.master.clipboard_clear()
self.master.clipboard_append(self.console_output.selection_get())
def browse_directory(self, setting_name):
path = filedialog.askdirectory()
if path:
self.entries[setting_name].delete(0, tk.END)
self.entries[setting_name].insert(0, path)
def on_mousewheel(self, event):
"""Handle scroll event"""
if self.console_output.yview()[1] < 1.0:
self.user_scrolled = True
else:
self.user_scrolled = False
def update_console(self, line):
"""Update console with scroll handling"""
self.console_output.configure(state="normal")
self.console_output.insert(tk.END, line)
if not self.user_scrolled:
self.console_output.yview(tk.END)
self.console_output.configure(state="disabled")
def browse_file(self, setting_name, input_type):
if input_type == "directory":
path = filedialog.askdirectory()
else:
path = filedialog.askopenfilename()
if path:
self.settings[setting_name] = path
self.entries[setting_name].delete(0, tk.END)
self.entries[setting_name].insert(0, self.settings[setting_name])
def browse_input_lora(self):
"""Browse for input LoRA file"""
file_path = filedialog.askopenfilename(filetypes=[("LoRA files", "*.safetensors")])
if file_path:
self.input_lora_entry.delete(0, tk.END)
self.input_lora_entry.insert(0, file_path)
def browse_output_dir(self):
"""Browse for output directory"""
dir_path = filedialog.askdirectory()
if dir_path:
self.output_dir_entry.delete(0, tk.END)
self.output_dir_entry.insert(0, dir_path)
def convert_lora(self):
"""Convert the LoRA model using specified settings"""
input_path = self.input_lora_entry.get()
output_dir = self.output_dir_entry.get()
converted_name = self.converted_lora_name_entry.get()
if not input_path or not output_dir or not converted_name:
messagebox.showerror("Error", "Please fill in all fields.")
return
output_path = os.path.join(output_dir, converted_name + ".safetensors")
command = [
sys.executable, "convert_lora.py",
"--input", input_path,
"--output", output_path,
"--target", "other"
]
self.run_subprocess(command, "Conversion")
def run_subprocess(self, cmd, name, callback=None):
"""Run a subprocess and handle its output with UTF-8 encoding"""
env = os.environ.copy()
env["PYTHONIOENCODING"] = "utf-8" # Устанавливаем UTF-8 для среды выполнения
if os.name == 'nt':
creationflags = subprocess.CREATE_NEW_PROCESS_GROUP
preexec_fn = None
else:
creationflags = 0
preexec_fn = os.setsid
# Запускаем подпроцесс с явным указанием кодировки UTF-8
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True, # Включаем текстовый режим для автоматической декодировки
bufsize=1, # Построчная буферизация
universal_newlines=True, # Поддержка универсальных переносов строк
encoding='utf-8', # Явно указываем кодировку UTF-8 для вывода
env=env,
creationflags=creationflags,
preexec_fn=preexec_fn
)
self.current_process = process
if os.name == 'nt':
self.process_group_id = process.pid
def read_output(pipe, output_type):
"""Читает вывод подпроцесса построчно"""
while True:
line = pipe.readline()
if not line:
break
self.master.after(0, self.update_console, f"{name} {output_type}: {line}")
pipe.close()
# Запускаем потоки для чтения stdout и stderr
threading.Thread(target=read_output, args=(process.stdout, "STDOUT"), daemon=True).start()
threading.Thread(target=read_output, args=(process.stderr, "STDERR"), daemon=True).start()
def check_process():
"""Проверяет завершение подпроцесса"""
process.wait()
self.master.after(0, self.update_console, f"{name} process completed.\n")
self.current_process = None
if callback:
callback()
threading.Thread(target=check_process, daemon=True).start()
def start_training(self):
"""Запускает обучение с последовательным выполнением процессов кэширования"""
# Check for unsupported optimizer
optimizer_type = self.entries["OPTIMIZER_TYPE"].get()
if optimizer_type == "came":
messagebox.showwarning(
"Предупреждение",
"Оптимизатор 'came' не поддерживается в текущей версии. Пожалуйста, выберите другой оптимизатор, например 'adamw' или 'adamw8bit'."
)
return
# Update settings from entries
self.settings.update({
"MODEL_TYPE": self.entries["MODEL_TYPE"].get(),
"FLOW_SHIFT": float(self.entries["FLOW_SHIFT"].get()),
"LEARNING_RATE": float(self.entries["LEARNING_RATE"].get()),
"LORA_LR_RATIO": int(self.entries["LORA_LR_RATIO"].get()),
"NETWORK_DIM": int(self.entries["NETWORK_DIM"].get()),
"NETWORK_ALPHA": float(self.entries["NETWORK_ALPHA"].get()),
"MAX_TRAIN_EPOCHS": int(self.entries["MAX_TRAIN_EPOCHS"].get()),
"SAVE_EVERY_N_EPOCHS": int(self.entries["SAVE_EVERY_N_EPOCHS"].get()),
"SEED": int(self.entries["SEED"].get()),
"BLOCKS_SWAP": int(self.entries["BLOCKS_SWAP"].get()),
"DATASET_CONFIG": self.entries["DATASET_CONFIG"].get(),
"VAE_MODEL": self.entries["VAE_MODEL"].get(),
"CLIP_MODEL": self.entries["CLIP_MODEL"].get(),
"T5_MODEL": self.entries["T5_MODEL"].get(),
"DIT_MODEL": self.entries["DIT_MODEL"].get(),
"LORA_OUTPUT_DIR": self.entries["LORA_OUTPUT_DIR"].get(),
"LORA_NAME": self.entries["LORA_NAME"].get(),
"RESUME_TRAINING": self.entries["RESUME_TRAINING"].get(),
"OPTIMIZER_TYPE": optimizer_type,
"OPTIMIZER_ARGS": self.entries["OPTIMIZER_ARGS"].get(),
"ATTENTION_MECHANISM": self.entries["ATTENTION_MECHANISM"].get(),
"LOGGING_DIR": self.entries["LOGGING_DIR"].get(),
"LOG_WITH": self.entries["LOG_WITH"].get(),
"LOG_PREFIX": self.entries["LOG_PREFIX"].get(),
"IMG_IN_TXT_IN_OFFLOADING": self.entries["IMG_IN_TXT_IN_OFFLOADING"].get(),
"LR_SCHEDULER": self.entries["LR_SCHEDULER"].get(),
"LR_WARMUP_STEPS": self.entries["LR_WARMUP_STEPS"].get(),
"LR_DECAY_STEPS": self.entries["LR_DECAY_STEPS"].get(),
"TIMESTEP_SAMPLING": self.entries["TIMESTEP_SAMPLING"].get(),
"DISCRETE_FLOW_SHIFT": self.entries["DISCRETE_FLOW_SHIFT"].get(),
"WEIGHTING_SCHEME": self.entries["WEIGHTING_SCHEME"].get(),
"METADATA_TITLE": self.entries["METADATA_TITLE"].get(),
"METADATA_AUTHOR": self.entries["METADATA_AUTHOR"].get(),
"METADATA_DESCRIPTION": self.entries["METADATA_DESCRIPTION"].get(),
"METADATA_LICENSE": self.entries["METADATA_LICENSE"].get(),
"METADATA_TAGS": self.entries["METADATA_TAGS"].get(),
"FP8": self.fp8_var.get(),
"SCALED": self.scaled_var.get()
})
# Build training command
command = [
"accelerate", "launch",
"--num_cpu_threads_per_process", "2",
"--mixed_precision", "bf16",
"wan_train_network.py",
"--task", self.settings["MODEL_TYPE"],
"--dit", self.settings["DIT_MODEL"],
"--dataset_config", self.settings["DATASET_CONFIG"],
"--sdpa",
"--mixed_precision", "bf16",
]
# Добавляем параметры для Weight Optimization
if self.settings["FP8"]:
command.append("--fp8_base")
if self.settings["SCALED"]:
command.append("--fp8_scaled")
command.extend([
"--blocks_to_swap", str(self.settings["BLOCKS_SWAP"]),
"--optimizer_type", self.settings["OPTIMIZER_TYPE"],
"--learning_rate", str(self.settings["LEARNING_RATE"]),
"--gradient_checkpointing",
"--max_data_loader_n_workers", "2",
"--persistent_data_loader_workers",
"--network_module", "networks.lora_wan",
"--network_dim", str(self.settings["NETWORK_DIM"]),
"--network_alpha", str(self.settings["NETWORK_ALPHA"]),
"--network_args", f"loraplus_lr_ratio={self.settings['LORA_LR_RATIO']}",
"--timestep_sampling", self.settings["TIMESTEP_SAMPLING"],
"--discrete_flow_shift", str(self.settings["DISCRETE_FLOW_SHIFT"]),
"--max_train_epochs", str(self.settings["MAX_TRAIN_EPOCHS"]),
"--save_every_n_epochs", str(self.settings["SAVE_EVERY_N_EPOCHS"]),
"--save_state",
"--seed", str(self.settings["SEED"]),
"--output_dir", self.settings["LORA_OUTPUT_DIR"],
"--output_name", self.settings["LORA_NAME"],
])
if self.settings["OPTIMIZER_ARGS"]:
command.extend(["--optimizer_args", self.settings["OPTIMIZER_ARGS"]])
attention = self.settings["ATTENTION_MECHANISM"]
if attention != "none":
command.append(f"--{attention}")
logging_dir = self.settings["LOGGING_DIR"]
if logging_dir:
command.extend(["--logging_dir", logging_dir])
log_with = self.settings["LOG_WITH"]
if log_with != "none":
command.extend(["--log_with", log_with])
log_prefix = self.settings["LOG_PREFIX"]
if log_prefix:
command.extend(["--log_prefix", log_prefix])
if self.settings["IMG_IN_TXT_IN_OFFLOADING"]:
command.append("--img_in_txt_in_offloading")
lr_scheduler = self.settings["LR_SCHEDULER"]
if lr_scheduler:
command.extend(["--lr_scheduler", lr_scheduler])
lr_warmup_steps = self.settings["LR_WARMUP_STEPS"]
if lr_warmup_steps:
command.extend(["--lr_warmup_steps", lr_warmup_steps])
lr_decay_steps = self.settings["LR_DECAY_STEPS"]
if lr_decay_steps:
command.extend(["--lr_decay_steps", lr_decay_steps])
weighting_scheme = self.settings["WEIGHTING_SCHEME"]
if weighting_scheme != "none":
command.extend(["--weighting_scheme", weighting_scheme])
metadata_title = self.settings["METADATA_TITLE"]
if metadata_title:
command.extend(["--metadata_title", metadata_title])
metadata_author = self.settings["METADATA_AUTHOR"]
if metadata_author:
command.extend(["--metadata_author", metadata_author])
metadata_description = self.settings["METADATA_DESCRIPTION"]
if metadata_description:
command.extend(["--metadata_description", metadata_description])
metadata_license = self.settings["METADATA_LICENSE"]
if metadata_license:
command.extend(["--metadata_license", metadata_license])
metadata_tags = self.settings["METADATA_TAGS"]
if metadata_tags:
command.extend(["--metadata_tags", metadata_tags])
if self.settings["RESUME_TRAINING"].strip():
command.append(f"--resume={self.settings['RESUME_TRAINING']}")
cache_preparation_command = [
sys.executable, "wan_cache_latents.py",
"--dataset_config", self.settings["DATASET_CONFIG"],
"--vae", self.settings["VAE_MODEL"],
"--clip", self.settings["CLIP_MODEL"]
]
text_encoder_caching_command = [
sys.executable, "wan_cache_text_encoder_outputs.py",
"--dataset_config", self.settings["DATASET_CONFIG"],
"--t5", self.settings["T5_MODEL"],
"--batch_size", "16",
"--fp8_t5"
]
self.console_output.configure(state="normal")
self.console_output.delete(1.0, tk.END)
self.console_output.configure(state="disabled")
if self.enable_cache_var.get():
self.update_console("Starting cache preparation...\n")
def on_text_encoder_caching_complete():
self.update_console("Text encoder caching completed.\nStarting training...\n")
self.run_subprocess(command, "Training")
def on_cache_preparation_complete():
self.update_console("Cache preparation completed.\nStarting text encoder caching...\n")
self.run_subprocess(text_encoder_caching_command, "Text Encoder Caching", on_text_encoder_caching_complete)
self.run_subprocess(cache_preparation_command, "Cache Preparation", on_cache_preparation_complete)
else:
self.update_console("Starting training without caching...\n")
self.run_subprocess(command, "Training")
def stop_training(self):
"""Stop the current running process"""
if self.current_process and self.current_process.poll() is None:
try:
if os.name == 'nt':
self.current_process.send_signal(signal.CTRL_BREAK_EVENT)
else:
os.killpg(os.getpgid(self.current_process.pid), signal.SIGTERM)
except Exception as e:
self.update_console("Error stopping process: " + str(e) + "\n")
try:
self.current_process.wait(timeout=5)
except subprocess.TimeoutExpired:
try:
self.current_process.kill()
self.current_process.wait()
except Exception as e:
self.update_console("Error killing process: " + str(e) + "\n")
self.current_process = None
if self.training_thread:
self.training_thread.join(timeout=1)
self.training_thread = None
self.update_console("Training stopped\n")
else:
self.update_console("No active process to stop\n")
def save_settings(self):
"""Save all settings, including conversion settings, to a JSON file"""
current_settings = {}
for key, entry in self.entries.items():
if isinstance(entry, ttk.Combobox):
current_settings[key] = entry.get()
elif isinstance(entry, tk.BooleanVar):
current_settings[key] = entry.get()
else:
current_settings[key] = entry.get()
current_settings["FP8"] = self.fp8_var.get()
current_settings["SCALED"] = self.scaled_var.get()
current_settings["ENABLE_CACHE"] = self.enable_cache_var.get()
file_path = filedialog.asksaveasfilename(defaultextension=".json", filetypes=[("JSON files", "*.json")])
if file_path:
with open(file_path, "w") as f:
json.dump(current_settings, f, indent=4)
def load_settings(self):
"""Load settings from a JSON file, including conversion settings"""
file_path = filedialog.askopenfilename(filetypes=[("JSON files", "*.json")])
if file_path:
with open(file_path, "r") as f:
loaded_settings = json.load(f)
for key, value in loaded_settings.items():
if key in self.entries:
if isinstance(self.entries[key], ttk.Combobox):
self.entries[key].set(value)
elif isinstance(self.entries[key], tk.BooleanVar):
self.entries[key].set(value)
else:
self.entries[key].delete(0, tk.END)
self.entries[key].insert(0, value)
if "FP8" in loaded_settings:
self.fp8_var.set(loaded_settings["FP8"])
if "SCALED" in loaded_settings:
self.scaled_var.set(loaded_settings["SCALED"])
if "ENABLE_CACHE" in loaded_settings:
self.enable_cache_var.set(loaded_settings["ENABLE_CACHE"])
self.toggle_scaled() # Update Scaled checkbox state based on FP8
root = tk.Tk()
gui = LoRATrainerGUI(root)
root.mainloop() |