File size: 40,731 Bytes
ebb79f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
import tkinter as tk
from tkinter import ttk, filedialog, messagebox, Menu
import subprocess
import threading
import json
import os
import sys
import signal

# Dark theme color scheme
BG_COLOR = "#2C3E50"       # Main background (dark gray with blue tint)
FG_COLOR = "#ECF0F1"       # Light text
ACCENT_COLOR = "#2980B9"   # Blue accent for tabs
ENTRY_BG = "#1B2A38"       # Entry field background (darker than main)
BUTTON_ACTIVE = "#1B2A38"  # Active button background
BORDER_COLOR = "#333333"   # Dark border color
ACTIVE_ENTRY_BG = "white"  # Background color for active entry field
ACTIVE_ENTRY_FG = "black"  # Text color for active entry field

class LoRATrainerGUI:
    def __init__(self, master):
        self.master = master
        master.title("Wan 2.1 LoRA Trainer")
        master.geometry("900x1024")
        master.configure(bg=BG_COLOR)

        self.current_process = None
        self.training_thread = None
        self.process_group_id = None
        self.user_scrolled = False  # Flag for manual console scrolling

        # Initialize settings with default values, including conversion settings
        self.settings = {
            "DATASET_CONFIG": "dataset/dataset_example.toml",
            "VAE_MODEL": "Models/Wan/Wan2.1_VAE.pth",
            "CLIP_MODEL": "Models/Wan/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
            "T5_MODEL": "Models/Wan/models_t5_umt5-xxl-enc-bf16.pth",
            "DIT_MODEL": "Models/Wan/wan2.1_i2v_720p_14B_fp8_e4m3fn.safetensors",
            "LORA_OUTPUT_DIR": "Output_LoRAs/",
            "LORA_NAME": "My_Best_Lora_v1",
            "MODEL_TYPE": "i2v-14B",
            "FLOW_SHIFT": 3.0,
            "LEARNING_RATE": 2e-5,
            "LORA_LR_RATIO": 4,
            "NETWORK_DIM": 32,
            "NETWORK_ALPHA": 4,
            "MAX_TRAIN_EPOCHS": 70,
            "SAVE_EVERY_N_EPOCHS": 10,
            "SEED": 1234,
            "BLOCKS_SWAP": 16,
            "RESUME_TRAINING": "",
            "OPTIMIZER_TYPE": "adamw8bit",
            "OPTIMIZER_ARGS": "",
            "ATTENTION_MECHANISM": "none",
            "LOGGING_DIR": "",
            "LOG_WITH": "none",
            "LOG_PREFIX": "",
            "IMG_IN_TXT_IN_OFFLOADING": False,
            "LR_SCHEDULER": "constant",
            "LR_WARMUP_STEPS": "",
            "LR_DECAY_STEPS": "",
            "TIMESTEP_SAMPLING": "shift",
            "DISCRETE_FLOW_SHIFT": "3.0",
            "WEIGHTING_SCHEME": "none",
            "METADATA_TITLE": "",
            "METADATA_AUTHOR": "",
            "METADATA_DESCRIPTION": "",
            "METADATA_LICENSE": "",
            "METADATA_TAGS": "",
            "INPUT_LORA": "",
            "OUTPUT_DIR": "",
            "CONVERTED_LORA_NAME": "",
            "FP8": True,  # Default FP8 setting
            "SCALED": False  # Default Scaled setting
        }

        self.model_types = ["t2v-1.3B", "t2v-14B", "i2v-14B", "t2i-14B"]
        self.optimizer_types = ["adamw", "adamw8bit", "adafactor", "torch.optim.AdamW", "bitsandbytes.optim.AdEMAMix8bit", "bitsandbytes.optim.PagedAdEMAMix8bit", "came"]

        self.setup_styles()

        # Create notebook and tabs
        self.notebook = ttk.Notebook(master)
        self.notebook.pack(fill=tk.BOTH, expand=True, padx=10, pady=10)

        # Создание вкладок с привязкой события клика мыши
        self.training_tab = ttk.Frame(self.notebook)
        self.training_tab.bind("<Button-1>", self.remove_focus)  # Привязка клика для снятия фокуса
        self.notebook.add(self.training_tab, text="Training settings")

        self.advanced_tab = ttk.Frame(self.notebook)
        self.advanced_tab.bind("<Button-1>", self.remove_focus)  # Привязка клика для снятия фокуса
        self.notebook.add(self.advanced_tab, text="Advanced settings")

        self.conversion_tab = ttk.Frame(self.notebook)
        self.conversion_tab.bind("<Button-1>", self.remove_focus)  # Привязка клика для снятия фокуса
        self.notebook.add(self.conversion_tab, text="LoRA Conversion")

        # Initialize tab contents
        self.create_training_settings()
        self.create_advanced_settings()
        self.create_conversion_settings()

        # Create context menu for copying console text
        self.context_menu = Menu(self.master, tearoff=0)
        self.context_menu.add_command(label="Copy", command=self.copy_selected_text)

    def remove_focus(self, event):
        """Снимает фокус с активного виджета при клике по фону"""
        self.master.focus_set()

    def setup_styles(self):
        """Set up styles for dark theme"""
        style = ttk.Style()
        style.theme_use("clam")

        style.configure(".", background=BG_COLOR, foreground=FG_COLOR)
        style.configure("TFrame", background=BG_COLOR)
        style.configure("TLabel", background=BG_COLOR, foreground=FG_COLOR)

        style.configure(
            "TButton",
            background=BG_COLOR,
            foreground=FG_COLOR,
            bordercolor=BORDER_COLOR,
            borderwidth=1,
            focusthickness=3,
            focuscolor=BG_COLOR,
            padding=[5, 1]
        )
        style.map(
            "TButton",
            background=[("active", BUTTON_ACTIVE), ("pressed", BUTTON_ACTIVE)],
            foreground=[("active", FG_COLOR), ("pressed", FG_COLOR)]
        )

        style.configure("TCheckbutton", background=BG_COLOR, foreground=FG_COLOR)
        style.map("TCheckbutton", background=[("active", BG_COLOR)], foreground=[("active", FG_COLOR)])

        style.configure("TNotebook", background=BG_COLOR, borderwidth=0)
        style.configure("TNotebook.Tab", background=BG_COLOR, foreground=FG_COLOR, padding=[5, 2])
        style.map("TNotebook.Tab", background=[("selected", ACCENT_COLOR)], foreground=[("selected", FG_COLOR)])

        style.configure(
            "TEntry",
            fieldbackground=ENTRY_BG,
            foreground=FG_COLOR,
            bordercolor=BORDER_COLOR
        )
        style.map("TEntry",
            fieldbackground=[("focus", ACTIVE_ENTRY_BG)],
            foreground=[("focus", ACTIVE_ENTRY_FG)]
        )

        style.configure(
            "TCombobox",
            fieldbackground=ENTRY_BG,
            background=BG_COLOR,
            foreground=FG_COLOR,
            bordercolor=BORDER_COLOR
        )
        style.map("TCombobox",
            fieldbackground=[("focus", ACTIVE_ENTRY_BG), ("readonly", ENTRY_BG), ("!disabled", ENTRY_BG)],
            foreground=[("focus", ACTIVE_ENTRY_FG), ("readonly", FG_COLOR), ("!disabled", FG_COLOR)],
            selectbackground=[("readonly", ENTRY_BG), ("!disabled", ENTRY_BG)],
            selectforeground=[("readonly", FG_COLOR), ("!disabled", FG_COLOR)]
        )

        style.configure(
            "Vertical.TScrollbar",
            background=ENTRY_BG,
            troughcolor=BG_COLOR,
            bordercolor=BORDER_COLOR,
            arrowcolor=FG_COLOR,
            darkcolor=BG_COLOR,
            lightcolor=BG_COLOR
        )
        style.map(
            "Vertical.TScrollbar",
            background=[("active", BUTTON_ACTIVE), ("pressed", BUTTON_ACTIVE)]
        )

    def create_training_settings(self):
        row = 0

        ttk.Label(self.training_tab, text="Training Settings", font=("Arial", 12, "bold")).grid(
            row=row, column=0, columnspan=3, pady=(10, 10)
        )
        row += 1

        button_frame_top = ttk.Frame(self.training_tab)
        button_frame_top.grid(row=row, column=0, columnspan=3, pady=5)
        ttk.Button(button_frame_top, text="Load Settings", command=self.load_settings).pack(side=tk.LEFT, padx=10)
        ttk.Button(button_frame_top, text="Save Settings", command=self.save_settings).pack(side=tk.LEFT, padx=10)
        row += 1

        settings_config = [
            ("Dataset Config", "DATASET_CONFIG", "file"),
            ("VAE Model", "VAE_MODEL", "file"),
            ("Clip Model", "CLIP_MODEL", "file"),
            ("T5 Model", "T5_MODEL", "file"),
            ("Dit Model", "DIT_MODEL", "file"),
            ("LoRA Output Dir", "LORA_OUTPUT_DIR", "directory"),
            ("LoRA Name", "LORA_NAME", "text"),
            ("Model Type", "MODEL_TYPE", "dropdown"),
            ("Flow Shift", "FLOW_SHIFT", "float"),
            ("Learning Rate", "LEARNING_RATE", "float"),
            ("LoRA LR Ratio", "LORA_LR_RATIO", "int"),
            ("Network Dim", "NETWORK_DIM", "int"),
            ("Network Alpha", "NETWORK_ALPHA", "float"),
            ("Max Train Epochs", "MAX_TRAIN_EPOCHS", "int"),
            ("Save Every N Epochs", "SAVE_EVERY_N_EPOCHS", "int"),
            ("Seed", "SEED", "int"),
            ("Blocks Swap", "BLOCKS_SWAP", "int"),
            ("Resume Training", "RESUME_TRAINING", "directory"),
            ("Optimizer Type", "OPTIMIZER_TYPE", "dropdown"),
            ("Optimizer Args", "OPTIMIZER_ARGS", "text"),
        ]

        self.entries = {}

        for label_text, key, input_type in settings_config:
            ttk.Label(self.training_tab, text=f"{label_text}:").grid(
                row=row, column=0, sticky=tk.W, padx=5, pady=2
            )

            if input_type == "dropdown":
                if key == "MODEL_TYPE":
                    var = tk.StringVar(value=self.settings[key])
                    self.entries[key] = ttk.Combobox(
                        self.training_tab, textvariable=var, values=self.model_types, state="readonly"
                    )
                    self.entries[key].current(self.model_types.index(self.settings[key]))
                elif key == "OPTIMIZER_TYPE":
                    var = tk.StringVar(value=self.settings[key])
                    self.entries[key] = ttk.Combobox(
                        self.training_tab, textvariable=var, values=self.optimizer_types, state="readonly"
                    )
                    self.entries[key].current(self.optimizer_types.index(self.settings[key]))
            else:
                self.entries[key] = ttk.Entry(self.training_tab, width=40)
                self.entries[key].insert(0, self.settings[key])

            self.entries[key].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)

            if input_type in ["file", "directory"]:
                ttk.Button(
                    self.training_tab,
                    text="Browse",
                    command=lambda k=key, t=input_type: self.browse_file(k, t)
                ).grid(row=row, column=2, sticky=tk.W, padx=5)

            row += 1

        # Weight Optimization Checkboxes
        ttk.Label(self.training_tab, text="Weight Optimization:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.fp8_var = tk.BooleanVar(value=self.settings["FP8"])
        self.scaled_var = tk.BooleanVar(value=self.settings["SCALED"])
        self.fp8_check = ttk.Checkbutton(self.training_tab, text="FP8 Base", variable=self.fp8_var, command=self.toggle_scaled)
        self.fp8_check.grid(row=row, column=1, sticky=tk.W, padx=5, pady=2)
        self.scaled_check = ttk.Checkbutton(self.training_tab, text="FP8 Scaled", variable=self.scaled_var, state=tk.DISABLED if not self.fp8_var.get() else tk.NORMAL)
        self.scaled_check.grid(row=row, column=1, sticky=tk.W, padx=100, pady=2)
        row += 1

        self.enable_cache_var = tk.BooleanVar(value=True)
        ttk.Checkbutton(
            self.training_tab, text="Enable Cache Preparation", variable=self.enable_cache_var
        ).grid(row=row, column=0, columnspan=3, pady=5)
        row += 1

        button_frame = ttk.Frame(self.training_tab)
        button_frame.grid(row=row, column=0, columnspan=3, pady=10)

        ttk.Button(button_frame, text="Start Training", command=self.start_training).pack(side=tk.LEFT, padx=10)
        ttk.Button(button_frame, text="Stop Training", command=self.stop_training).pack(side=tk.LEFT, padx=10)
        row += 1

        self.console_frame = ttk.Frame(self.training_tab)
        self.console_frame.grid(row=row, column=0, columnspan=3, padx=5, pady=5, sticky="nsew")

        self.console_output = tk.Text(
            self.console_frame,
            height=10,
            width=80,
            bg=ENTRY_BG,
            fg=FG_COLOR,
            wrap="word",
            state="disabled",
            selectbackground="white",
            selectforeground="black"
        )
        self.console_output.grid(row=0, column=0, sticky="nsew")

        self.console_scrollbar = ttk.Scrollbar(
            self.console_frame,
            orient="vertical",
            command=self.console_output.yview,
            style="Vertical.TScrollbar"
        )
        self.console_scrollbar.grid(row=0, column=1, sticky="ns")

        self.console_output.configure(yscrollcommand=self.console_scrollbar.set)

        self.console_output.bind("<MouseWheel>", self.on_mousewheel)
        self.console_output.bind("<Button-4>", self.on_mousewheel)  # For Linux
        self.console_output.bind("<Button-5>", self.on_mousewheel)  # For Linux
        self.console_output.bind("<Button-3>", self.show_context_menu)

        self.training_tab.grid_rowconfigure(row, weight=1)
        self.training_tab.grid_columnconfigure(1, weight=1)
        self.console_frame.grid_rowconfigure(0, weight=1)
        self.console_frame.grid_columnconfigure(0, weight=1)

    def toggle_scaled(self):
        """Enable or disable the Scaled checkbox based on FP8 checkbox state"""
        if self.fp8_var.get():
            self.scaled_check.config(state=tk.NORMAL)
        else:
            self.scaled_check.config(state=tk.DISABLED)
            self.scaled_var.set(False)

    def create_advanced_settings(self):
        row = 0

        ttk.Label(self.advanced_tab, text="Advanced Settings", font=("Arial", 12, "bold")).grid(
            row=row, column=0, columnspan=3, pady=(10, 10)
        )
        row += 1

        # Attention Mechanism
        ttk.Label(self.advanced_tab, text="Attention Mechanism:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.attention_var = tk.StringVar(value=self.settings["ATTENTION_MECHANISM"])
        attention_options = ["none", "sdpa", "flash_attn", "sage_attn", "xformers", "flash3", "split_attn"]
        self.entries["ATTENTION_MECHANISM"] = ttk.Combobox(self.advanced_tab, textvariable=self.attention_var, values=attention_options, state="readonly")
        self.entries["ATTENTION_MECHANISM"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        # Logging
        ttk.Label(self.advanced_tab, text="Logging Directory:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.entries["LOGGING_DIR"] = ttk.Entry(self.advanced_tab, width=40)
        self.entries["LOGGING_DIR"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        ttk.Button(self.advanced_tab, text="Browse", command=lambda: self.browse_directory("LOGGING_DIR")).grid(row=row, column=2, sticky=tk.W, padx=5)
        row += 1

        ttk.Label(self.advanced_tab, text="Log With:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.log_with_var = tk.StringVar(value=self.settings["LOG_WITH"])
        log_with_options = ["none", "tensorboard", "wandb", "all"]
        self.entries["LOG_WITH"] = ttk.Combobox(self.advanced_tab, textvariable=self.log_with_var, values=log_with_options, state="readonly")
        self.entries["LOG_WITH"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        ttk.Label(self.advanced_tab, text="Log Prefix:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.entries["LOG_PREFIX"] = ttk.Entry(self.advanced_tab, width=40)
        self.entries["LOG_PREFIX"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        # Memory Management
        self.img_in_txt_in_offloading_var = tk.BooleanVar(value=self.settings["IMG_IN_TXT_IN_OFFLOADING"])
        ttk.Checkbutton(self.advanced_tab, text="Offload img_in and txt_in to CPU", variable=self.img_in_txt_in_offloading_var).grid(row=row, column=0, columnspan=3, pady=5)
        self.entries["IMG_IN_TXT_IN_OFFLOADING"] = self.img_in_txt_in_offloading_var
        row += 1

        # Learning Rate Scheduler
        ttk.Label(self.advanced_tab, text="LR Scheduler:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.lr_scheduler_var = tk.StringVar(value=self.settings["LR_SCHEDULER"])
        lr_scheduler_options = ["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "adafactor"]
        self.entries["LR_SCHEDULER"] = ttk.Combobox(self.advanced_tab, textvariable=self.lr_scheduler_var, values=lr_scheduler_options, state="readonly")
        self.entries["LR_SCHEDULER"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        ttk.Label(self.advanced_tab, text="LR Warmup Steps:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.entries["LR_WARMUP_STEPS"] = ttk.Entry(self.advanced_tab, width=40)
        self.entries["LR_WARMUP_STEPS"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        ttk.Label(self.advanced_tab, text="LR Decay Steps:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.entries["LR_DECAY_STEPS"] = ttk.Entry(self.advanced_tab, width=40)
        self.entries["LR_DECAY_STEPS"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        # Timestep Sampling
        ttk.Label(self.advanced_tab, text="Timestep Sampling:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.timestep_sampling_var = tk.StringVar(value=self.settings["TIMESTEP_SAMPLING"])
        timestep_sampling_options = ["sigma", "uniform", "sigmoid", "shift"]
        self.entries["TIMESTEP_SAMPLING"] = ttk.Combobox(self.advanced_tab, textvariable=self.timestep_sampling_var, values=timestep_sampling_options, state="readonly")
        self.entries["TIMESTEP_SAMPLING"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        ttk.Label(self.advanced_tab, text="Discrete Flow Shift:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.entries["DISCRETE_FLOW_SHIFT"] = ttk.Entry(self.advanced_tab, width=40)
        self.entries["DISCRETE_FLOW_SHIFT"].insert(0, self.settings["DISCRETE_FLOW_SHIFT"])
        self.entries["DISCRETE_FLOW_SHIFT"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        # Weighting Scheme
        ttk.Label(self.advanced_tab, text="Weighting Scheme:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.weighting_scheme_var = tk.StringVar(value=self.settings["WEIGHTING_SCHEME"])
        weighting_scheme_options = ["logit_normal", "mode", "cosmap", "sigma_sqrt", "none"]
        self.entries["WEIGHTING_SCHEME"] = ttk.Combobox(self.advanced_tab, textvariable=self.weighting_scheme_var, values=weighting_scheme_options, state="readonly")
        self.entries["WEIGHTING_SCHEME"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        # Metadata
        ttk.Label(self.advanced_tab, text="Metadata Title:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.entries["METADATA_TITLE"] = ttk.Entry(self.advanced_tab, width=40)
        self.entries["METADATA_TITLE"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        ttk.Label(self.advanced_tab, text="Metadata Author:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.entries["METADATA_AUTHOR"] = ttk.Entry(self.advanced_tab, width=40)
        self.entries["METADATA_AUTHOR"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        ttk.Label(self.advanced_tab, text="Metadata Description:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.entries["METADATA_DESCRIPTION"] = ttk.Entry(self.advanced_tab, width=40)
        self.entries["METADATA_DESCRIPTION"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        ttk.Label(self.advanced_tab, text="Metadata License:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.entries["METADATA_LICENSE"] = ttk.Entry(self.advanced_tab, width=40)
        self.entries["METADATA_LICENSE"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        ttk.Label(self.advanced_tab, text="Metadata Tags:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.entries["METADATA_TAGS"] = ttk.Entry(self.advanced_tab, width=40)
        self.entries["METADATA_TAGS"].grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        row += 1

        # Настройка столбца для автоматического расширения
        self.advanced_tab.grid_columnconfigure(1, weight=1)

    def create_conversion_settings(self):
        """Create the LoRA Conversion tab with input fields and buttons"""
        row = 0

        ttk.Label(self.conversion_tab, text="LoRA Conversion Settings", font=("Arial", 12, "bold")).grid(
            row=row, column=0, columnspan=3, pady=(10, 10)
        )
        row += 1

        # Input LoRA File
        ttk.Label(self.conversion_tab, text="Input LoRA File:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.input_lora_entry = ttk.Entry(self.conversion_tab, width=40)
        self.input_lora_entry.grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        self.input_lora_entry.insert(0, self.settings["INPUT_LORA"])
        ttk.Button(self.conversion_tab, text="Browse", command=self.browse_input_lora).grid(row=row, column=2, sticky=tk.W, padx=5)
        row += 1

        # Output Directory
        ttk.Label(self.conversion_tab, text="Output Directory:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.output_dir_entry = ttk.Entry(self.conversion_tab, width=40)
        self.output_dir_entry.grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        self.output_dir_entry.insert(0, self.settings["OUTPUT_DIR"])
        ttk.Button(self.conversion_tab, text="Browse", command=self.browse_output_dir).grid(row=row, column=2, sticky=tk.W, padx=5)
        row += 1

        # Converted LoRA Name
        ttk.Label(self.conversion_tab, text="Converted LoRA Name:").grid(row=row, column=0, sticky=tk.W, padx=5, pady=2)
        self.converted_lora_name_entry = ttk.Entry(self.conversion_tab, width=40)
        self.converted_lora_name_entry.grid(row=row, column=1, sticky=tk.EW, padx=5, pady=2)
        self.converted_lora_name_entry.insert(0, self.settings["CONVERTED_LORA_NAME"])
        row += 1

        # Convert Button
        ttk.Button(self.conversion_tab, text="Convert", command=self.convert_lora).grid(row=row, column=0, columnspan=3, pady=10)

        # Configure grid to expand horizontally
        self.conversion_tab.grid_columnconfigure(1, weight=1)

        # Add entries to self.entries for saving/loading
        self.entries["INPUT_LORA"] = self.input_lora_entry
        self.entries["OUTPUT_DIR"] = self.output_dir_entry
        self.entries["CONVERTED_LORA_NAME"] = self.converted_lora_name_entry

    def show_context_menu(self, event):
        """Show context menu on right-click"""
        try:
            self.context_menu.tk_popup(event.x_root, event.y_root)
        finally:
            self.context_menu.grab_release()

    def copy_selected_text(self):
        """Copy selected text to clipboard"""
        if self.console_output.selection_get():
            self.master.clipboard_clear()
            self.master.clipboard_append(self.console_output.selection_get())

    def browse_directory(self, setting_name):
        path = filedialog.askdirectory()
        if path:
            self.entries[setting_name].delete(0, tk.END)
            self.entries[setting_name].insert(0, path)

    def on_mousewheel(self, event):
        """Handle scroll event"""
        if self.console_output.yview()[1] < 1.0:
            self.user_scrolled = True
        else:
            self.user_scrolled = False

    def update_console(self, line):
        """Update console with scroll handling"""
        self.console_output.configure(state="normal")
        self.console_output.insert(tk.END, line)
        if not self.user_scrolled:
            self.console_output.yview(tk.END)
        self.console_output.configure(state="disabled")

    def browse_file(self, setting_name, input_type):
        if input_type == "directory":
            path = filedialog.askdirectory()
        else:
            path = filedialog.askopenfilename()
        if path:
            self.settings[setting_name] = path
            self.entries[setting_name].delete(0, tk.END)
            self.entries[setting_name].insert(0, self.settings[setting_name])

    def browse_input_lora(self):
        """Browse for input LoRA file"""
        file_path = filedialog.askopenfilename(filetypes=[("LoRA files", "*.safetensors")])
        if file_path:
            self.input_lora_entry.delete(0, tk.END)
            self.input_lora_entry.insert(0, file_path)

    def browse_output_dir(self):
        """Browse for output directory"""
        dir_path = filedialog.askdirectory()
        if dir_path:
            self.output_dir_entry.delete(0, tk.END)
            self.output_dir_entry.insert(0, dir_path)

    def convert_lora(self):
        """Convert the LoRA model using specified settings"""
        input_path = self.input_lora_entry.get()
        output_dir = self.output_dir_entry.get()
        converted_name = self.converted_lora_name_entry.get()

        if not input_path or not output_dir or not converted_name:
            messagebox.showerror("Error", "Please fill in all fields.")
            return

        output_path = os.path.join(output_dir, converted_name + ".safetensors")

        command = [
            sys.executable, "convert_lora.py",
            "--input", input_path,
            "--output", output_path,
            "--target", "other"
        ]

        self.run_subprocess(command, "Conversion")

    def run_subprocess(self, cmd, name, callback=None):
        """Run a subprocess and handle its output with UTF-8 encoding"""
        env = os.environ.copy()
        env["PYTHONIOENCODING"] = "utf-8"  # Устанавливаем UTF-8 для среды выполнения

        if os.name == 'nt':
            creationflags = subprocess.CREATE_NEW_PROCESS_GROUP
            preexec_fn = None
        else:
            creationflags = 0
            preexec_fn = os.setsid

        # Запускаем подпроцесс с явным указанием кодировки UTF-8
        process = subprocess.Popen(
            cmd,
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,  # Включаем текстовый режим для автоматической декодировки
            bufsize=1,  # Построчная буферизация
            universal_newlines=True,  # Поддержка универсальных переносов строк
            encoding='utf-8',  # Явно указываем кодировку UTF-8 для вывода
            env=env,
            creationflags=creationflags,
            preexec_fn=preexec_fn
        )
        self.current_process = process
        if os.name == 'nt':
            self.process_group_id = process.pid

        def read_output(pipe, output_type):
            """Читает вывод подпроцесса построчно"""
            while True:
                line = pipe.readline()
                if not line:
                    break
                self.master.after(0, self.update_console, f"{name} {output_type}: {line}")
            pipe.close()

        # Запускаем потоки для чтения stdout и stderr
        threading.Thread(target=read_output, args=(process.stdout, "STDOUT"), daemon=True).start()
        threading.Thread(target=read_output, args=(process.stderr, "STDERR"), daemon=True).start()

        def check_process():
            """Проверяет завершение подпроцесса"""
            process.wait()
            self.master.after(0, self.update_console, f"{name} process completed.\n")
            self.current_process = None
            if callback:
                callback()

        threading.Thread(target=check_process, daemon=True).start()

    def start_training(self):
        """Запускает обучение с последовательным выполнением процессов кэширования"""
        # Check for unsupported optimizer
        optimizer_type = self.entries["OPTIMIZER_TYPE"].get()
        if optimizer_type == "came":
            messagebox.showwarning(
                "Предупреждение",
                "Оптимизатор 'came' не поддерживается в текущей версии. Пожалуйста, выберите другой оптимизатор, например 'adamw' или 'adamw8bit'."
            )
            return

        # Update settings from entries
        self.settings.update({
            "MODEL_TYPE": self.entries["MODEL_TYPE"].get(),
            "FLOW_SHIFT": float(self.entries["FLOW_SHIFT"].get()),
            "LEARNING_RATE": float(self.entries["LEARNING_RATE"].get()),
            "LORA_LR_RATIO": int(self.entries["LORA_LR_RATIO"].get()),
            "NETWORK_DIM": int(self.entries["NETWORK_DIM"].get()),
            "NETWORK_ALPHA": float(self.entries["NETWORK_ALPHA"].get()),
            "MAX_TRAIN_EPOCHS": int(self.entries["MAX_TRAIN_EPOCHS"].get()),
            "SAVE_EVERY_N_EPOCHS": int(self.entries["SAVE_EVERY_N_EPOCHS"].get()),
            "SEED": int(self.entries["SEED"].get()),
            "BLOCKS_SWAP": int(self.entries["BLOCKS_SWAP"].get()),
            "DATASET_CONFIG": self.entries["DATASET_CONFIG"].get(),
            "VAE_MODEL": self.entries["VAE_MODEL"].get(),
            "CLIP_MODEL": self.entries["CLIP_MODEL"].get(),
            "T5_MODEL": self.entries["T5_MODEL"].get(),
            "DIT_MODEL": self.entries["DIT_MODEL"].get(),
            "LORA_OUTPUT_DIR": self.entries["LORA_OUTPUT_DIR"].get(),
            "LORA_NAME": self.entries["LORA_NAME"].get(),
            "RESUME_TRAINING": self.entries["RESUME_TRAINING"].get(),
            "OPTIMIZER_TYPE": optimizer_type,
            "OPTIMIZER_ARGS": self.entries["OPTIMIZER_ARGS"].get(),
            "ATTENTION_MECHANISM": self.entries["ATTENTION_MECHANISM"].get(),
            "LOGGING_DIR": self.entries["LOGGING_DIR"].get(),
            "LOG_WITH": self.entries["LOG_WITH"].get(),
            "LOG_PREFIX": self.entries["LOG_PREFIX"].get(),
            "IMG_IN_TXT_IN_OFFLOADING": self.entries["IMG_IN_TXT_IN_OFFLOADING"].get(),
            "LR_SCHEDULER": self.entries["LR_SCHEDULER"].get(),
            "LR_WARMUP_STEPS": self.entries["LR_WARMUP_STEPS"].get(),
            "LR_DECAY_STEPS": self.entries["LR_DECAY_STEPS"].get(),
            "TIMESTEP_SAMPLING": self.entries["TIMESTEP_SAMPLING"].get(),
            "DISCRETE_FLOW_SHIFT": self.entries["DISCRETE_FLOW_SHIFT"].get(),
            "WEIGHTING_SCHEME": self.entries["WEIGHTING_SCHEME"].get(),
            "METADATA_TITLE": self.entries["METADATA_TITLE"].get(),
            "METADATA_AUTHOR": self.entries["METADATA_AUTHOR"].get(),
            "METADATA_DESCRIPTION": self.entries["METADATA_DESCRIPTION"].get(),
            "METADATA_LICENSE": self.entries["METADATA_LICENSE"].get(),
            "METADATA_TAGS": self.entries["METADATA_TAGS"].get(),
            "FP8": self.fp8_var.get(),
            "SCALED": self.scaled_var.get()
        })

        # Build training command
        command = [
            "accelerate", "launch",
            "--num_cpu_threads_per_process", "2",
            "--mixed_precision", "bf16",
            "wan_train_network.py",
            "--task", self.settings["MODEL_TYPE"],
            "--dit", self.settings["DIT_MODEL"],
            "--dataset_config", self.settings["DATASET_CONFIG"],
            "--sdpa",
            "--mixed_precision", "bf16",
        ]

        # Добавляем параметры для Weight Optimization
        if self.settings["FP8"]:
            command.append("--fp8_base")
            if self.settings["SCALED"]:
                command.append("--fp8_scaled")

        command.extend([
            "--blocks_to_swap", str(self.settings["BLOCKS_SWAP"]),
            "--optimizer_type", self.settings["OPTIMIZER_TYPE"],
            "--learning_rate", str(self.settings["LEARNING_RATE"]),
            "--gradient_checkpointing",
            "--max_data_loader_n_workers", "2",
            "--persistent_data_loader_workers",
            "--network_module", "networks.lora_wan",
            "--network_dim", str(self.settings["NETWORK_DIM"]),
            "--network_alpha", str(self.settings["NETWORK_ALPHA"]),
            "--network_args", f"loraplus_lr_ratio={self.settings['LORA_LR_RATIO']}",
            "--timestep_sampling", self.settings["TIMESTEP_SAMPLING"],
            "--discrete_flow_shift", str(self.settings["DISCRETE_FLOW_SHIFT"]),
            "--max_train_epochs", str(self.settings["MAX_TRAIN_EPOCHS"]),
            "--save_every_n_epochs", str(self.settings["SAVE_EVERY_N_EPOCHS"]),
            "--save_state",
            "--seed", str(self.settings["SEED"]),
            "--output_dir", self.settings["LORA_OUTPUT_DIR"],
            "--output_name", self.settings["LORA_NAME"],
        ])

        if self.settings["OPTIMIZER_ARGS"]:
            command.extend(["--optimizer_args", self.settings["OPTIMIZER_ARGS"]])

        attention = self.settings["ATTENTION_MECHANISM"]
        if attention != "none":
            command.append(f"--{attention}")

        logging_dir = self.settings["LOGGING_DIR"]
        if logging_dir:
            command.extend(["--logging_dir", logging_dir])

        log_with = self.settings["LOG_WITH"]
        if log_with != "none":
            command.extend(["--log_with", log_with])

        log_prefix = self.settings["LOG_PREFIX"]
        if log_prefix:
            command.extend(["--log_prefix", log_prefix])

        if self.settings["IMG_IN_TXT_IN_OFFLOADING"]:
            command.append("--img_in_txt_in_offloading")

        lr_scheduler = self.settings["LR_SCHEDULER"]
        if lr_scheduler:
            command.extend(["--lr_scheduler", lr_scheduler])

        lr_warmup_steps = self.settings["LR_WARMUP_STEPS"]
        if lr_warmup_steps:
            command.extend(["--lr_warmup_steps", lr_warmup_steps])

        lr_decay_steps = self.settings["LR_DECAY_STEPS"]
        if lr_decay_steps:
            command.extend(["--lr_decay_steps", lr_decay_steps])

        weighting_scheme = self.settings["WEIGHTING_SCHEME"]
        if weighting_scheme != "none":
            command.extend(["--weighting_scheme", weighting_scheme])

        metadata_title = self.settings["METADATA_TITLE"]
        if metadata_title:
            command.extend(["--metadata_title", metadata_title])

        metadata_author = self.settings["METADATA_AUTHOR"]
        if metadata_author:
            command.extend(["--metadata_author", metadata_author])

        metadata_description = self.settings["METADATA_DESCRIPTION"]
        if metadata_description:
            command.extend(["--metadata_description", metadata_description])

        metadata_license = self.settings["METADATA_LICENSE"]
        if metadata_license:
            command.extend(["--metadata_license", metadata_license])

        metadata_tags = self.settings["METADATA_TAGS"]
        if metadata_tags:
            command.extend(["--metadata_tags", metadata_tags])

        if self.settings["RESUME_TRAINING"].strip():
            command.append(f"--resume={self.settings['RESUME_TRAINING']}")

        cache_preparation_command = [
            sys.executable, "wan_cache_latents.py",
            "--dataset_config", self.settings["DATASET_CONFIG"],
            "--vae", self.settings["VAE_MODEL"],
            "--clip", self.settings["CLIP_MODEL"]
        ]

        text_encoder_caching_command = [
            sys.executable, "wan_cache_text_encoder_outputs.py",
            "--dataset_config", self.settings["DATASET_CONFIG"],
            "--t5", self.settings["T5_MODEL"],
            "--batch_size", "16",
            "--fp8_t5"
        ]

        self.console_output.configure(state="normal")
        self.console_output.delete(1.0, tk.END)
        self.console_output.configure(state="disabled")

        if self.enable_cache_var.get():
            self.update_console("Starting cache preparation...\n")

            def on_text_encoder_caching_complete():
                self.update_console("Text encoder caching completed.\nStarting training...\n")
                self.run_subprocess(command, "Training")

            def on_cache_preparation_complete():
                self.update_console("Cache preparation completed.\nStarting text encoder caching...\n")
                self.run_subprocess(text_encoder_caching_command, "Text Encoder Caching", on_text_encoder_caching_complete)

            self.run_subprocess(cache_preparation_command, "Cache Preparation", on_cache_preparation_complete)
        else:
            self.update_console("Starting training without caching...\n")
            self.run_subprocess(command, "Training")

    def stop_training(self):
        """Stop the current running process"""
        if self.current_process and self.current_process.poll() is None:
            try:
                if os.name == 'nt':
                    self.current_process.send_signal(signal.CTRL_BREAK_EVENT)
                else:
                    os.killpg(os.getpgid(self.current_process.pid), signal.SIGTERM)
            except Exception as e:
                self.update_console("Error stopping process: " + str(e) + "\n")
            try:
                self.current_process.wait(timeout=5)
            except subprocess.TimeoutExpired:
                try:
                    self.current_process.kill()
                    self.current_process.wait()
                except Exception as e:
                    self.update_console("Error killing process: " + str(e) + "\n")
            self.current_process = None
            if self.training_thread:
                self.training_thread.join(timeout=1)
                self.training_thread = None
            self.update_console("Training stopped\n")
        else:
            self.update_console("No active process to stop\n")

    def save_settings(self):
        """Save all settings, including conversion settings, to a JSON file"""
        current_settings = {}
        for key, entry in self.entries.items():
            if isinstance(entry, ttk.Combobox):
                current_settings[key] = entry.get()
            elif isinstance(entry, tk.BooleanVar):
                current_settings[key] = entry.get()
            else:
                current_settings[key] = entry.get()
        current_settings["FP8"] = self.fp8_var.get()
        current_settings["SCALED"] = self.scaled_var.get()
        current_settings["ENABLE_CACHE"] = self.enable_cache_var.get()
        file_path = filedialog.asksaveasfilename(defaultextension=".json", filetypes=[("JSON files", "*.json")])
        if file_path:
            with open(file_path, "w") as f:
                json.dump(current_settings, f, indent=4)

    def load_settings(self):
        """Load settings from a JSON file, including conversion settings"""
        file_path = filedialog.askopenfilename(filetypes=[("JSON files", "*.json")])
        if file_path:
            with open(file_path, "r") as f:
                loaded_settings = json.load(f)
            for key, value in loaded_settings.items():
                if key in self.entries:
                    if isinstance(self.entries[key], ttk.Combobox):
                        self.entries[key].set(value)
                    elif isinstance(self.entries[key], tk.BooleanVar):
                        self.entries[key].set(value)
                    else:
                        self.entries[key].delete(0, tk.END)
                        self.entries[key].insert(0, value)
            if "FP8" in loaded_settings:
                self.fp8_var.set(loaded_settings["FP8"])
            if "SCALED" in loaded_settings:
                self.scaled_var.set(loaded_settings["SCALED"])
            if "ENABLE_CACHE" in loaded_settings:
                self.enable_cache_var.set(loaded_settings["ENABLE_CACHE"])
            self.toggle_scaled()  # Update Scaled checkbox state based on FP8

root = tk.Tk()
gui = LoRATrainerGUI(root)
root.mainloop()