Upload 3 files
Browse files- .gitattributes +1 -0
- src/fragrance_faiss.index +3 -0
- src/fragrance_metadata.pkl +3 -0
- src/streamlit_app.py +179 -40
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
src/fragrance_faiss.index filter=lfs diff=lfs merge=lfs -text
|
src/fragrance_faiss.index
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a235f0b4596acedbea9331f0fdc4f7c354e2cbbf3631adca4f5cf83b8778b988
|
3 |
+
size 73921581
|
src/fragrance_metadata.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a3dbbdd17c47cd65492a0ff104e4be008879e7862dfa5d26b7f896fa9831a4d
|
3 |
+
size 5195729
|
src/streamlit_app.py
CHANGED
@@ -1,40 +1,179 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
"
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
.
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
import pickle
|
8 |
+
from langchain_ollama import ChatOllama
|
9 |
+
|
10 |
+
# Fragrance card function
|
11 |
+
def create_fragrance_card(name, rating, brand, perfumer_text, top_notes, middle_notes, base_notes, accords_text, explanation):
|
12 |
+
# Create fragrance card HTML
|
13 |
+
card_html = f"""
|
14 |
+
<div style="border: 1px solid #ddd; padding: 15px; margin: 10px; border-radius: 15px;
|
15 |
+
background: linear-gradient(to bottom right, #ffffff, #f2f6fc);
|
16 |
+
width: 400px; color: #222; box-shadow: 0 4px 8px rgba(0,0,0,0.1);">
|
17 |
+
<h3 style="color: #3a3a3a; text-align: center;">{name} β{rating}</h3>
|
18 |
+
<p><strong>π·οΈ Brand:</strong> {brand}</p>
|
19 |
+
<p><strong>π Perfumer(s):</strong> {perfumer_text}</p>
|
20 |
+
<p><strong>πΏ Top Notes:</strong> {top_notes}</p>
|
21 |
+
<p><strong>π Heart Notes:</strong> {middle_notes}</p>
|
22 |
+
<p><strong>π² Base Notes:</strong> {base_notes}</p>
|
23 |
+
<p><strong>πΌ Main Accords:</strong> {accords_text}</p>
|
24 |
+
<p><strong>π‘ AI Explanation:</strong> {explanation}</p>
|
25 |
+
</div>
|
26 |
+
"""
|
27 |
+
|
28 |
+
return card_html
|
29 |
+
|
30 |
+
# Load FAISS database, metadata, and encoder with cache
|
31 |
+
@st.cache_resource
|
32 |
+
def load_resources():
|
33 |
+
index = faiss.read_index('fragrance_faiss.index')
|
34 |
+
with open('fragrance_metadata.pkl', 'rb') as f:
|
35 |
+
metadata = pickle.load(f)
|
36 |
+
encoder = SentenceTransformer('paraphrase-mpnet-base-v2')
|
37 |
+
return index, metadata, encoder
|
38 |
+
|
39 |
+
# Gets a brief explanation from Ollama for why this fragrance matches the user's query
|
40 |
+
def get_ollama_explanation(query, description):
|
41 |
+
prompt = f"""
|
42 |
+
A user is searching for a fragrance with this description: "{query}"
|
43 |
+
|
44 |
+
One recommendation is:
|
45 |
+
{description}
|
46 |
+
|
47 |
+
Explain in 1-2 sentences, in plain English, why this fragrance matches the user's query.
|
48 |
+
"""
|
49 |
+
response = llm.invoke(prompt)
|
50 |
+
return response.content.strip()
|
51 |
+
|
52 |
+
# Load Ollama
|
53 |
+
llm = ChatOllama(model="llama3.2")
|
54 |
+
|
55 |
+
# Initialize app
|
56 |
+
st.set_page_config(page_title="Fragrance Recommendation System", layout="wide")
|
57 |
+
|
58 |
+
# Add title to top of app interface
|
59 |
+
st.title("Fragrance Recommendation System")
|
60 |
+
|
61 |
+
# Sidebar filters
|
62 |
+
st.sidebar.header("Filters")
|
63 |
+
query = st.text_input("Describe your ideal fragrance:")
|
64 |
+
|
65 |
+
col1, col2 = st.columns(2)
|
66 |
+
with col1:
|
67 |
+
k = st.slider("Number of recommendations:", 1, 10, 5)
|
68 |
+
with col2:
|
69 |
+
min_rating = st.slider("Minimum rating:", 1.0, 5.0, 3.5)
|
70 |
+
|
71 |
+
gender_filter = st.sidebar.selectbox("Gender:", ["All", "Male", "Female", "Unisex"])
|
72 |
+
brand_filter = st.sidebar.text_input("Brand (leave empty for all):", "").title()
|
73 |
+
note_filter = st.sidebar.text_input("Notes (comma-separated):", "").lower()
|
74 |
+
|
75 |
+
# Load resources
|
76 |
+
index, metadata, encoder = load_resources()
|
77 |
+
|
78 |
+
# Convert rating_values to numeric
|
79 |
+
if 'rating_value' in metadata.columns:
|
80 |
+
metadata['rating_value'] = pd.to_numeric(
|
81 |
+
metadata['rating_value'],
|
82 |
+
errors='coerce')
|
83 |
+
|
84 |
+
# Press button and start recommendations
|
85 |
+
if st.button('Get Recommendations'):
|
86 |
+
with st.spinner('Finding your fragrance recs...'):
|
87 |
+
if query == "":
|
88 |
+
st.warning("No query entered.")
|
89 |
+
else:
|
90 |
+
# Apply filters sequentially
|
91 |
+
current_df = metadata.copy()
|
92 |
+
|
93 |
+
# Gender filter
|
94 |
+
if gender_filter != "All":
|
95 |
+
current_df = current_df[current_df['gender'].str.lower() == gender_filter.lower()]
|
96 |
+
|
97 |
+
# Brand filter
|
98 |
+
if brand_filter:
|
99 |
+
current_df = current_df[current_df['brand'].str.contains(brand_filter, case=False, na=False)]
|
100 |
+
|
101 |
+
# Rating filter (with NaN handling)
|
102 |
+
if 'rating_value' in current_df.columns:
|
103 |
+
current_df = current_df[current_df['rating_value'].ge(min_rating)]
|
104 |
+
|
105 |
+
# Note filter
|
106 |
+
if note_filter:
|
107 |
+
notes = [n.strip().lower() for n in note_filter.split(",")]
|
108 |
+
def note_check(row):
|
109 |
+
note_fields = [
|
110 |
+
str(row['top']).lower() if pd.notna(row['top']) else "",
|
111 |
+
str(row['middle']).lower() if pd.notna(row['middle']) else "",
|
112 |
+
str(row['base']).lower() if pd.notna(row['base']) else ""
|
113 |
+
]
|
114 |
+
return any(note in field for note in notes for field in note_fields)
|
115 |
+
|
116 |
+
current_df = current_df[current_df.apply(note_check, axis=1)]
|
117 |
+
|
118 |
+
valid_indices = current_df.index.tolist()
|
119 |
+
|
120 |
+
# Check if any fragrances remain
|
121 |
+
if not valid_indices:
|
122 |
+
st.warning("No fragrances match all your filters. Try relaxing some criteria.")
|
123 |
+
st.stop()
|
124 |
+
|
125 |
+
# Grab the vectors for fragrances still present after the filters
|
126 |
+
filtered_vectors = np.vstack([index.reconstruct(int(idx)) for idx in valid_indices])
|
127 |
+
temp_index = faiss.IndexFlatIP(filtered_vectors.shape[1])
|
128 |
+
temp_index.add(filtered_vectors)
|
129 |
+
|
130 |
+
# Encode the query and normalize it for cosine similarity
|
131 |
+
query_vector = encoder.encode([query])
|
132 |
+
faiss.normalize_L2(query_vector)
|
133 |
+
|
134 |
+
# Perform the search and returns indices of the most similar vectors and their similarity scores
|
135 |
+
sim_score, I = temp_index.search(query_vector, min(k, len(valid_indices)))
|
136 |
+
|
137 |
+
# Get the recommened fragrance's indices and similarity score
|
138 |
+
results = [(valid_indices[i], sim_score[0][j]) for j, i in enumerate(I[0])]
|
139 |
+
|
140 |
+
# Display results
|
141 |
+
st.subheader(f"Recommended Fragrances ({len(results)} results)")
|
142 |
+
cols = st.columns(3)
|
143 |
+
|
144 |
+
for idx, (result_idx, sim_score) in enumerate(results):
|
145 |
+
rec = metadata.loc[result_idx]
|
146 |
+
|
147 |
+
# Extract data with fallbacks
|
148 |
+
name = rec.get('perfume', 'Unknown')
|
149 |
+
brand = rec.get('brand', 'Unknown')
|
150 |
+
perfumer_text = rec.get('perfumer', 'Unknown')
|
151 |
+
top_notes = rec.get('top', 'Unknown')
|
152 |
+
middle_notes = rec.get('middle', 'Unknown')
|
153 |
+
base_notes = rec.get('base', 'Unknown')
|
154 |
+
accords_text = rec.get('accord', 'Unknown')
|
155 |
+
rating = rec.get('rating_value', '?')
|
156 |
+
|
157 |
+
# Create natural language fragrance description
|
158 |
+
description = (
|
159 |
+
f"The fragrance is called {name}. It is by {brand}. "
|
160 |
+
f"The perfumer is {perfumer_text}. The top notes are {top_notes}, "
|
161 |
+
f"the heart notes are {middle_notes}, and the base notes are {base_notes}. "
|
162 |
+
f"The main accords are {accords_text}."
|
163 |
+
)
|
164 |
+
|
165 |
+
explanation = get_ollama_explanation(query, description)
|
166 |
+
|
167 |
+
# Add rating to card
|
168 |
+
card = create_fragrance_card(
|
169 |
+
name,
|
170 |
+
rating,
|
171 |
+
brand,
|
172 |
+
perfumer_text,
|
173 |
+
top_notes,
|
174 |
+
middle_notes,
|
175 |
+
base_notes,
|
176 |
+
accords_text,
|
177 |
+
explanation
|
178 |
+
)
|
179 |
+
cols[idx % 3].markdown(card, unsafe_allow_html=True)
|