import torch from transformers import AutoTokenizer from sklearn.preprocessing import LabelEncoder from utils.BiLSTM import BiLSTMAttentionBERT import numpy as np def load_model_for_prediction(): try: # Load model from Hugging Face Hub model = BiLSTMAttentionBERT.from_pretrained( "joko333/BiLSTM_v01", hidden_dim=128, num_classes=22, num_layers=2, dropout=0.5 ) model.eval() # Initialize label encoder with predefined classes label_encoder = LabelEncoder() label_encoder.classes_ = np.array(['Addition', 'Causal', 'Cause and Effect', 'Clarification', 'Comparison', 'Concession', 'Conditional', 'Contrast', 'Contrastive Emphasis', 'Definition', 'Elaboration', 'Emphasis', 'Enumeration', 'Explanation', 'Generalization', 'Illustration', 'Inference', 'Problem Solution', 'Purpose', 'Sequential', 'Summary', 'Temporal Sequence']) # Initialize tokenizer tokenizer = AutoTokenizer.from_pretrained( 'dmis-lab/biobert-base-cased-v1.2' ) return model, label_encoder, tokenizer except Exception as e: print(f"Error loading model components: {str(e)}") return None, None, None def predict_sentence(model, sentence, tokenizer, label_encoder): """ Make prediction for a single sentence with label validation. """ model.eval() # Tokenize encoding = tokenizer( sentence, add_special_tokens=True, max_length=512, padding='max_length', truncation=True, return_tensors='pt' ) try: with torch.no_grad(): # Get model outputs outputs = model(encoding['input_ids'], encoding['attention_mask']) probabilities = torch.softmax(outputs, dim=1) # Get prediction and probability prob, pred_idx = torch.max(probabilities, dim=1) # Validate prediction index if pred_idx.item() >= len(label_encoder.classes_): print(f"Warning: Model predicted invalid label index {pred_idx.item()}") return "Unknown", 0.0 # Convert to label try: predicted_class = label_encoder.classes_[pred_idx.item()] return predicted_class, prob.item() except IndexError: print(f"Warning: Invalid label index {pred_idx.item()}") return "Unknown", 0.0 except Exception as e: print(f"Prediction error: {str(e)}") return "Error", 0.0 def print_labels(label_encoder, show_counts=False): """Print all labels and their corresponding indices""" print("\nAvailable labels:") print("-" * 40) for idx, label in enumerate(label_encoder.classes_): print(f"Index {idx}: {label}") print("-" * 40) print(f"Total number of classes: {len(label_encoder.classes_)}\n")