Refactor model loading function to handle checkpoints and improve error handling
Browse files- utils/prediction.py +19 -36
utils/prediction.py
CHANGED
|
@@ -19,57 +19,40 @@ def load_model_for_prediction():
|
|
| 19 |
dropout=0.5
|
| 20 |
)
|
| 21 |
|
|
|
|
| 22 |
model = BiLSTMAttentionBERT(config)
|
|
|
|
|
|
|
| 23 |
model_path = hf_hub_download(
|
| 24 |
repo_id="joko333/BiLSTM_v01",
|
| 25 |
filename="model_epoch8_acc72.53.pt"
|
| 26 |
)
|
| 27 |
-
|
| 28 |
-
model.load_state_dict(state_dict)
|
| 29 |
|
| 30 |
-
#
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
st.
|
|
|
|
|
|
|
| 35 |
return None, None, None
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
st.write("Loading BiLSTM model...")
|
| 39 |
-
model = BiLSTMAttentionBERT.from_pretrained(
|
| 40 |
-
"joko333/BiLSTM_v01",
|
| 41 |
-
hidden_dim=128,
|
| 42 |
-
num_classes=22,
|
| 43 |
-
num_layers=2,
|
| 44 |
-
dropout=0.5
|
| 45 |
-
)
|
| 46 |
-
st.write("Model loaded successfully")
|
| 47 |
-
|
| 48 |
-
# Initialize label encoder
|
| 49 |
-
st.write("Initializing label encoder...")
|
| 50 |
label_encoder = LabelEncoder()
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
'Purpose', 'Sequential', 'Summary',
|
| 58 |
-
'Temporal Sequence'])
|
| 59 |
-
st.write("Label encoder initialized")
|
| 60 |
-
|
| 61 |
# Load tokenizer
|
| 62 |
-
st.write("Loading tokenizer...")
|
| 63 |
tokenizer = AutoTokenizer.from_pretrained('dmis-lab/biobert-base-cased-v1.2')
|
| 64 |
-
st.write("Tokenizer loaded successfully")
|
| 65 |
|
| 66 |
return model, label_encoder, tokenizer
|
| 67 |
|
| 68 |
except Exception as e:
|
| 69 |
-
st.error(f"
|
| 70 |
-
st.error(f"Error type: {type(e).__name__}")
|
| 71 |
-
import traceback
|
| 72 |
-
st.error(f"Traceback: {traceback.format_exc()}")
|
| 73 |
return None, None, None
|
| 74 |
|
| 75 |
def predict_sentence(model, sentence, tokenizer, label_encoder):
|
|
|
|
| 19 |
dropout=0.5
|
| 20 |
)
|
| 21 |
|
| 22 |
+
# Initialize model
|
| 23 |
model = BiLSTMAttentionBERT(config)
|
| 24 |
+
|
| 25 |
+
# Load checkpoint
|
| 26 |
model_path = hf_hub_download(
|
| 27 |
repo_id="joko333/BiLSTM_v01",
|
| 28 |
filename="model_epoch8_acc72.53.pt"
|
| 29 |
)
|
| 30 |
+
checkpoint = torch.load(model_path, map_location='cpu')
|
|
|
|
| 31 |
|
| 32 |
+
# Extract model state dict from checkpoint
|
| 33 |
+
if 'model_state_dict' in checkpoint:
|
| 34 |
+
state_dict = checkpoint['model_state_dict']
|
| 35 |
+
model.load_state_dict(state_dict)
|
| 36 |
+
st.write("Model loaded successfully")
|
| 37 |
+
else:
|
| 38 |
+
st.error("Invalid checkpoint format")
|
| 39 |
return None, None, None
|
| 40 |
|
| 41 |
+
# Initialize label encoder from checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
label_encoder = LabelEncoder()
|
| 43 |
+
if 'label_encoder_classes' in checkpoint:
|
| 44 |
+
label_encoder.classes_ = checkpoint['label_encoder_classes']
|
| 45 |
+
else:
|
| 46 |
+
st.error("Label encoder data not found in checkpoint")
|
| 47 |
+
return None, None, None
|
| 48 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# Load tokenizer
|
|
|
|
| 50 |
tokenizer = AutoTokenizer.from_pretrained('dmis-lab/biobert-base-cased-v1.2')
|
|
|
|
| 51 |
|
| 52 |
return model, label_encoder, tokenizer
|
| 53 |
|
| 54 |
except Exception as e:
|
| 55 |
+
st.error(f"Error loading model: {str(e)}")
|
|
|
|
|
|
|
|
|
|
| 56 |
return None, None, None
|
| 57 |
|
| 58 |
def predict_sentence(model, sentence, tokenizer, label_encoder):
|