Spaces:
Sleeping
Sleeping
from utils.model import BiLSTMAttentionBERT, BiLSTMConfig | |
import torch | |
from transformers import AutoTokenizer, AutoModel | |
from sklearn.preprocessing import LabelEncoder | |
import numpy as np | |
import streamlit as st | |
import requests | |
from huggingface_hub import hf_hub_download | |
def load_model_for_prediction(): | |
try: | |
st.write("Starting model loading...") | |
# Initialize BERT first | |
bert = AutoModel.from_pretrained('dmis-lab/biobert-base-cased-v1.2') | |
# Initialize config and model | |
config = BiLSTMConfig( | |
hidden_dim=128, | |
num_classes=22, | |
num_layers=2, | |
dropout=0.5 | |
) | |
model = BiLSTMAttentionBERT(config) | |
model.bert = bert # Set pre-trained BERT | |
# Load custom layers from checkpoint | |
model_path = hf_hub_download( | |
repo_id="joko333/BiLSTM_v01", | |
filename="model_epoch8_acc72.53.pt" | |
) | |
checkpoint = torch.load(model_path, map_location='cpu') | |
# Debug checkpoint structure | |
st.write("Checkpoint keys:", checkpoint.keys()) | |
if 'model_state_dict' in checkpoint: | |
# Extract only custom layer weights | |
custom_state_dict = {} | |
state_dict = checkpoint['model_state_dict'] | |
for key, value in state_dict.items(): | |
if not key.startswith('bert.'): | |
custom_state_dict[key] = value | |
# Load custom layers | |
model.load_state_dict(custom_state_dict, strict=False) | |
st.write("Model loaded successfully") | |
else: | |
st.error("Invalid checkpoint format") | |
return None, None, None | |
# Initialize label encoder from checkpoint | |
label_encoder = LabelEncoder() | |
if 'label_encoder_classes' in checkpoint: | |
label_encoder.classes_ = checkpoint['label_encoder_classes'] | |
else: | |
st.error("Label encoder data not found in checkpoint") | |
return None, None, None | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained('dmis-lab/biobert-base-cased-v1.2') | |
return model, label_encoder, tokenizer | |
except Exception as e: | |
st.error(f"Error loading model: {str(e)}") | |
return None, None, None | |
def predict_sentence(model, sentence, tokenizer, label_encoder): | |
""" | |
Make prediction for a single sentence with label validation. | |
""" | |
import time | |
start_time = time.time() | |
# Validation checks | |
st.write("π Starting prediction process...") | |
if model is None: | |
st.error("Error: Model not loaded") | |
return "Error: Model not loaded", 0.0 | |
if tokenizer is None: | |
st.error("Error: Tokenizer not loaded") | |
return "Error: Tokenizer not loaded", 0.0 | |
if label_encoder is None: | |
st.error("Error: Label encoder not loaded") | |
return "Error: Label encoder not loaded", 0.0 | |
# Force CPU device | |
st.write("βοΈ Preparing model...") | |
device = torch.device('cpu') | |
model = model.to(device) | |
model.eval() | |
# Tokenize | |
try: | |
st.write(f"π Processing text: {sentence[:50]}...") | |
encoding = tokenizer( | |
sentence, | |
add_special_tokens=True, | |
max_length=512, | |
padding='max_length', | |
truncation=True, | |
return_tensors='pt' | |
).to(device) | |
st.write("π€ Running model inference...") | |
with torch.no_grad(): | |
outputs = model(encoding['input_ids'], encoding['attention_mask']) | |
probabilities = torch.softmax(outputs, dim=1) | |
prob, pred_idx = torch.max(probabilities, dim=1) | |
predicted_label = label_encoder.classes_[pred_idx.item()] | |
elapsed_time = time.time() - start_time | |
st.write(f"β Prediction completed in {elapsed_time:.2f} seconds") | |
return predicted_label, prob.item() | |
except Exception as e: | |
st.error(f"β Prediction error: {str(e)}") | |
return f"Error: {str(e)}", 0.0 | |
def print_labels(label_encoder, show_counts=False): | |
"""Print all labels and their corresponding indices""" | |
print("\nAvailable labels:") | |
print("-" * 40) | |
for idx, label in enumerate(label_encoder.classes_): | |
print(f"Index {idx}: {label}") | |
print("-" * 40) | |
print(f"Total number of classes: {len(label_encoder.classes_)}\n") | |