joko333's picture
Add BiLSTMAttentionBERT model implementation and update import statements
dee2852
raw
history blame
4.09 kB
from utils.model import BiLSTMAttentionBERT
import torch
from transformers import AutoTokenizer
from sklearn.preprocessing import LabelEncoder
import numpy as np
import streamlit as st
import requests
def load_model_for_prediction():
try:
st.write("Starting model loading...")
# Test Hugging Face connectivity
st.write("Testing connection to Hugging Face...")
response = requests.get("https://huggingface.co/joko333/BiLSTM_v01")
if response.status_code != 200:
st.error(f"Cannot connect to Hugging Face. Status code: {response.status_code}")
return None, None, None
# Load model with logging
st.write("Loading BiLSTM model...")
model = BiLSTMAttentionBERT.from_pretrained(
"joko333/BiLSTM_v01",
hidden_dim=128,
num_classes=22,
num_layers=2,
dropout=0.5
)
st.write("Model loaded successfully")
# Initialize label encoder
st.write("Initializing label encoder...")
label_encoder = LabelEncoder()
label_encoder.classes_ = np.array(['Addition', 'Causal', 'Cause and Effect',
'Clarification', 'Comparison', 'Concession',
'Conditional', 'Contrast', 'Contrastive Emphasis',
'Definition', 'Elaboration', 'Emphasis',
'Enumeration', 'Explanation', 'Generalization',
'Illustration', 'Inference', 'Problem Solution',
'Purpose', 'Sequential', 'Summary',
'Temporal Sequence'])
st.write("Label encoder initialized")
# Load tokenizer
st.write("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained('dmis-lab/biobert-base-cased-v1.2')
st.write("Tokenizer loaded successfully")
return model, label_encoder, tokenizer
except Exception as e:
st.error(f"Detailed error: {str(e)}")
st.error(f"Error type: {type(e).__name__}")
import traceback
st.error(f"Traceback: {traceback.format_exc()}")
return None, None, None
def predict_sentence(model, sentence, tokenizer, label_encoder):
"""
Make prediction for a single sentence with label validation.
"""
# Validation checks
if model is None:
print("Error: Model not loaded")
return "Error: Model not loaded", 0.0
if tokenizer is None:
print("Error: Tokenizer not loaded")
return "Error: Tokenizer not loaded", 0.0
if label_encoder is None:
print("Error: Label encoder not loaded")
return "Error: Label encoder not loaded", 0.0
# Force CPU device
device = torch.device('cpu')
model = model.to(device)
model.eval()
# Tokenize
try:
encoding = tokenizer(
sentence,
add_special_tokens=True,
max_length=512,
padding='max_length',
truncation=True,
return_tensors='pt'
).to(device)
with torch.no_grad():
outputs = model(encoding['input_ids'], encoding['attention_mask'])
probabilities = torch.softmax(outputs, dim=1)
prob, pred_idx = torch.max(probabilities, dim=1)
predicted_label = label_encoder.classes_[pred_idx.item()]
return predicted_label, prob.item()
except Exception as e:
print(f"Prediction error: {str(e)}")
return f"Error: {str(e)}", 0.0
def print_labels(label_encoder, show_counts=False):
"""Print all labels and their corresponding indices"""
print("\nAvailable labels:")
print("-" * 40)
for idx, label in enumerate(label_encoder.classes_):
print(f"Index {idx}: {label}")
print("-" * 40)
print(f"Total number of classes: {len(label_encoder.classes_)}\n")