File size: 1,378 Bytes
dee2852
 
dd9aa69
dee2852
41047a5
1b17d16
 
41047a5
 
 
 
 
 
 
dee2852
1b17d16
 
 
41047a5
 
 
dee2852
1b17d16
 
 
 
 
 
 
41047a5
 
dee2852
 
41047a5
 
dee2852
 
41047a5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import torch.nn as nn
from transformers import PreTrainedModel, AutoModel, PretrainedConfig

class BiLSTMConfig(PretrainedConfig):
    model_type = "bilstm_attention"
    
    def __init__(self, hidden_dim=128, num_classes=22, num_layers=2, dropout=0.5, **kwargs):
        super().__init__(**kwargs)
        self.hidden_dim = hidden_dim
        self.num_classes = num_classes
        self.num_layers = num_layers
        self.dropout = dropout

class BiLSTMAttentionBERT(PreTrainedModel):
    config_class = BiLSTMConfig
    base_model_prefix = "bilstm_attention"
    
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.bert = AutoModel.from_pretrained('dmis-lab/biobert-base-cased-v1.2')
        self.lstm = nn.LSTM(
            768, 
            config.hidden_dim,
            config.num_layers,
            batch_first=True,
            bidirectional=True
        )
        self.dropout = nn.Dropout(config.dropout)
        self.fc = nn.Linear(config.hidden_dim * 2, config.num_classes)
        
    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids, attention_mask=attention_mask)
        bert_output = outputs[0]
        lstm_output, _ = self.lstm(bert_output)
        dropped = self.dropout(lstm_output[:, -1, :])
        logits = self.fc(dropped)
        return logits