File size: 611 Bytes
c4aa455 e7d2b25 4b141dc c4aa455 dc15246 c4aa455 e7d2b25 1e4dfde 2705cb4 1e4dfde eb3fa72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
import streamlit as st
from utils.prediction import load_model_for_prediction
#import transformers
#from transformers import pipeline
st.title('My first app')
x = st.slider('Select a value')
st.write(x, 'squared is', x * x)
# load the model and cache it
model, label_encoder, tokenizer = load_model_for_prediction()
if model is None or label_encoder is None or tokenizer is None:
st.error("Failed to load model components")
st.stop()
st.session_state['model'] = model
st.session_state['label_encoder'] = label_encoder
st.session_state['tokenizer'] = tokenizer
st.success('Model loaded successfully')
|