File size: 469 Bytes
c4aa455
e7d2b25
4b141dc
 
c4aa455
dc15246
c4aa455
 
e7d2b25
 
2705cb4
 
 
e7d2b25
eb3fa72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import streamlit as st
from utils.prediction import load_model_for_prediction
#import transformers
#from transformers import pipeline

st.title('My first app')
x = st.slider('Select a value')
st.write(x, 'squared is', x * x)
# load the model and cache it
model, label_encoder, tokenizer = load_model_for_prediction()
st.session_state['model'] = model
st.session_state['label_encoder'] = label_encoder
st.session_state['tokenizer'] = tokenizer
st.write('Model loaded')