File size: 28,795 Bytes
e344fcd c14e337 e344fcd c14e337 e344fcd c14e337 e344fcd c14e337 e344fcd c14e337 e344fcd c14e337 e344fcd c14e337 e344fcd c14e337 e344fcd c14e337 e344fcd c14e337 e344fcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
#!/usr/bin/env python3
"""
Hugging Face Gradio App for RDF Validation with MCP Server and Anthropic AI
This app serves both as a web interface and can expose MCP server functionality.
Deploy this on Hugging Face Spaces with your Anthropic API key.
"""
import gradio as gr
import os
import json
import sys
import asyncio
import logging
import requests
from typing import Any, Dict, List, Optional
import threading
import time
# CRITICAL: FORCE OVERRIDE ALL ENVIRONMENT VARIABLES THAT COULD INTERFERE
print("π§ FORCING ENVIRONMENT VARIABLE OVERRIDES...")
# Remove any HF environment variables that could cause URL concatenation
problematic_env_vars = [
'HF_API_URL',
'HF_INFERENCE_URL',
'HF_ENDPOINT_URL',
'HF_MODEL',
'HUGGINGFACE_API_URL',
'HUGGINGFACE_INFERENCE_URL'
]
for var in problematic_env_vars:
if var in os.environ:
old_value = os.environ[var]
del os.environ[var]
print(f"ποΈ Removed environment variable: {var} = {old_value}")
print("β
Environment variables cleaned")
# Add current directory to path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
# Import our validation logic
try:
from validator import validate_rdf
VALIDATOR_AVAILABLE = True
except ImportError:
VALIDATOR_AVAILABLE = False
print("β οΈ Warning: validator.py not found. Some features may be limited.")
# Optional: Check if OpenAI and requests are available
try:
from openai import OpenAI
OPENAI_AVAILABLE = True
except ImportError:
OPENAI_AVAILABLE = False
print("π‘ Install 'openai' package for AI-powered corrections: pip install openai")
try:
import requests
HF_INFERENCE_AVAILABLE = True
except ImportError:
HF_INFERENCE_AVAILABLE = False
print("π‘ Install 'requests' package for AI-powered corrections: pip install requests")
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration - ABSOLUTELY HARDCODED VALUES (NO ENV VARS ALLOWED)
HF_API_KEY = os.getenv('HF_API_KEY', '') # Only this one env var is allowed
# FORCE HARDCODED VALUES - IGNORE ALL OTHER ENVIRONMENT VARIABLES
HF_ENDPOINT_URL = "https://evxgv66ksxjlfrts.us-east-1.aws.endpoints.huggingface.cloud/v1/"
HF_MODEL = "lmstudio-community/Llama-3.3-70B-Instruct-GGUF" # Correct model name for your endpoint
print(f"π FORCED hardcoded endpoint: {HF_ENDPOINT_URL}")
print(f"π FORCED hardcoded model: {HF_MODEL}")
print(f"π HF_API_KEY configured: {'Yes' if HF_API_KEY else 'No'}")
# EXTRA PROTECTION: Override any modules that might have cached env vars
import sys
if 'requests' in sys.modules:
print("π Requests module detected - ensuring no cached env vars")
if 'httpx' in sys.modules:
print("π HTTPX module detected - ensuring no cached env vars")
# OpenAI client configuration for the endpoint
def get_openai_client():
"""Get configured OpenAI client for HF Inference Endpoint"""
if not HF_API_KEY:
print("β No HF_API_KEY available for OpenAI client")
return None
print(f"π Creating OpenAI client with:")
print(f" base_url: {HF_ENDPOINT_URL}")
print(f" api_key: {'***' + HF_API_KEY[-4:] if len(HF_API_KEY) > 4 else 'HIDDEN'}")
return OpenAI(
base_url=HF_ENDPOINT_URL,
api_key=HF_API_KEY,
timeout=120.0 # Increase timeout for cold starts
)
# Sample RDF data for examples
SAMPLE_VALID_RDF = '''<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bf="http://id.loc.gov/ontologies/bibframe/"
xmlns:bflc="http://id.loc.gov/ontologies/bflc/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<bf:Work rdf:about="http://example.org/work/1">
<rdf:type rdf:resource="http://id.loc.gov/ontologies/bibframe/Text"/>
<bf:title>
<bf:Title>
<bf:mainTitle>Complete Valid Monograph Title</bf:mainTitle>
<bf:subtitle>A Comprehensive Example for SHACL Validation</bf:subtitle>
</bf:Title>
</bf:title>
<bf:creator>
<bf:Agent>
<rdf:type rdf:resource="http://id.loc.gov/ontologies/bibframe/Person"/>
<rdfs:label>Valid Author Name</rdfs:label>
</bf:Agent>
</bf:creator>
<bf:subject>
<bf:Topic>
<rdfs:label>Library Science</rdfs:label>
</bf:Topic>
</bf:subject>
<bf:language>
<bf:Language rdf:about="http://id.loc.gov/vocabulary/languages/eng"/>
</bf:language>
<bf:hasInstance rdf:resource="http://example.org/instance/1"/>
</bf:Work>
<bf:Instance rdf:about="http://example.org/instance/1">
<rdf:type rdf:resource="http://id.loc.gov/ontologies/bibframe/Print"/>
<bf:instanceOf rdf:resource="http://example.org/work/1"/>
<bf:title>
<bf:Title>
<bf:mainTitle>Complete Valid Monograph Title</bf:mainTitle>
</bf:Title>
</bf:title>
<bf:provisionActivity>
<bf:Publication>
<bf:date>2024</bf:date>
<bf:place>
<bf:Place>
<rdfs:label>Washington, DC</rdfs:label>
</bf:Place>
</bf:place>
<bf:agent>
<bf:Agent>
<rdfs:label>Sample Publisher</rdfs:label>
</bf:Agent>
</bf:agent>
</bf:Publication>
</bf:provisionActivity>
<bf:extent>
<bf:Extent>
<rdfs:label>256 pages</rdfs:label>
</bf:Extent>
</bf:extent>
</bf:Instance>
</rdf:RDF>'''
SAMPLE_INVALID_RDF = '''<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bf="http://id.loc.gov/ontologies/bibframe/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<bf:Work rdf:about="http://example.org/work/1">
<!-- Missing rdf:type - this should cause SHACL validation failure -->
<bf:title>
<!-- Missing bf:Title wrapper - improper title structure -->
<bf:mainTitle>Invalid Monograph Title Structure</bf:mainTitle>
</bf:title>
<!-- Missing required bf:creator property -->
<!-- Missing other required properties like bf:language -->
</bf:Work>
<bf:Instance rdf:about="http://example.org/instance/1">
<rdf:type rdf:resource="http://id.loc.gov/ontologies/bibframe/Print"/>
<!-- Missing bf:instanceOf property - should link to Work -->
<bf:title>
<bf:Title>
<bf:mainTitle>Invalid Instance Title</bf:mainTitle>
</bf:Title>
</bf:title>
<!-- Missing required bf:provisionActivity -->
</bf:Instance>
</rdf:RDF>'''
# MCP Server Tools (can be used independently)
def validate_rdf_tool(rdf_content: str, template: str = "monograph") -> dict:
"""
Validate RDF/XML content against SHACL templates.
This tool validates RDF/XML data against predefined SHACL shapes to ensure
compliance with metadata standards like BIBFRAME. Returns detailed validation
results with conformance status and specific violation information.
Args:
rdf_content (str): The RDF/XML content to validate
template (str): Validation template to use ('monograph' or 'custom')
Returns:
dict: Validation results with conformance status and detailed feedback
"""
if not rdf_content:
return {"error": "No RDF/XML content provided", "conforms": False}
if not VALIDATOR_AVAILABLE:
return {
"error": "Validator not available - ensure validator.py is present",
"conforms": False
}
try:
conforms, results_text = validate_rdf(rdf_content.encode('utf-8'), template)
return {
"conforms": conforms,
"results": results_text,
"template": template,
"status": "β
Valid RDF" if conforms else "β Invalid RDF"
}
except Exception as e:
logger.error(f"Validation error: {str(e)}")
return {
"error": f"Validation failed: {str(e)}",
"conforms": False
}
def get_ai_suggestions(validation_results: str, rdf_content: str) -> str:
"""
Generate AI-powered fix suggestions for invalid RDF/XML.
This tool analyzes validation results and provides actionable suggestions
for fixing RDF/XML validation errors using AI or rule-based analysis.
Args:
validation_results (str): The validation error messages
rdf_content (str): The original RDF/XML content that failed validation
Returns:
str: Detailed suggestions for fixing the RDF validation issues
"""
if not OPENAI_AVAILABLE:
return generate_manual_suggestions(validation_results)
# Get API key dynamically at runtime
current_api_key = os.getenv('HF_API_KEY', '')
if not current_api_key:
return f"""
π **AI suggestions disabled**: Please set your Hugging Face API key as a Secret in your Space settings.
{generate_manual_suggestions(validation_results)}
"""
try:
# Use OpenAI client with your Hugging Face Inference Endpoint
print("π Attempting to get OpenAI client for suggestions...")
client = get_openai_client()
if not client:
print("β OpenAI client is None for suggestions.")
return f"""
π **AI suggestions disabled**: HF_API_KEY not configured or client creation failed.
{generate_manual_suggestions(validation_results)}
"""
print(f"β
OpenAI client obtained for suggestions. Client timeout: {client.timeout}")
prompt = f"""You are an expert in RDF/XML and SHACL validation. Analyze the following validation results and provide clear, actionable suggestions for fixing the RDF issues.
Validation Results:
{validation_results}
Original RDF (first 1000 chars):
{rdf_content[:1000]}...
Please provide:
1. A clear summary of what's wrong
2. Specific step-by-step instructions to fix each issue
3. Example corrections where applicable
4. Best practices to prevent similar issues
Format your response in a helpful, structured way using markdown."""
# Make API call using OpenAI client
print(f"π Making SUGGESTION API call to: {HF_ENDPOINT_URL} with model: {HF_MODEL}")
print(f"π Client base_url: {client.base_url}")
print("β³ Attempting client.chat.completions.create() for suggestions...")
chat_completion = client.chat.completions.create(
model=HF_MODEL,
messages=[
{
"role": "user",
"content": prompt
}
],
max_tokens=1500,
temperature=0.7,
top_p=0.9
)
print(f"β
client.chat.completions.create() returned for suggestions. Type: {type(chat_completion)}")
generated_text = chat_completion.choices[0].message.content
print("β
Suggestion API call successful, content extracted.")
return f"π€ **AI-Powered Suggestions:**\n\n{generated_text}"
except Exception as e:
logger.error(f"OpenAI/HF Inference Endpoint error (suggestions): {str(e)}", exc_info=True) # Added exc_info for full traceback
return f"""
β **AI suggestions error**: {str(e)}
{generate_manual_suggestions(validation_results)}
"""
def get_ai_correction(validation_results: str, rdf_content: str) -> str:
"""
Generate AI-powered corrected RDF/XML based on validation errors.
This tool takes invalid RDF/XML and validation results, then generates
a corrected version that addresses all identified validation issues.
Args:
validation_results (str): The validation error messages
rdf_content (str): The original invalid RDF/XML content
Returns:
str: Corrected RDF/XML that should pass validation
"""
if not OPENAI_AVAILABLE:
return generate_manual_correction_hints(validation_results, rdf_content)
# Get API key dynamically at runtime
current_api_key = os.getenv('HF_API_KEY', '')
if not current_api_key:
return f"""<!-- AI correction disabled: Set HF_API_KEY as a Secret in your Space settings -->
{generate_manual_correction_hints(validation_results, rdf_content)}"""
try:
# Use OpenAI client with your Hugging Face Inference Endpoint
print("π Attempting to get OpenAI client for correction...")
client = get_openai_client()
if not client:
print("β OpenAI client is None for correction.")
return f"""<!-- AI correction disabled: HF_API_KEY not configured or client creation failed. -->
{generate_manual_correction_hints(validation_results, rdf_content)}"""
print(f"β
OpenAI client obtained for correction. Client timeout: {client.timeout}")
prompt = f"""You are an expert in RDF/XML. Fix the following RDF/XML based on the validation errors provided.
Validation Errors:
{validation_results}
Original RDF/XML:
{rdf_content}
Please provide the corrected RDF/XML that addresses all validation issues.
- Return only the corrected XML without additional explanation
- Maintain the original structure as much as possible while fixing errors
- Ensure all namespace declarations are present
- Add any missing required properties
- Fix any syntax or structural issues"""
# Make API call using OpenAI client
print(f"π Making CORRECTION API call to: {HF_ENDPOINT_URL} with model: {HF_MODEL}")
print(f"π Client base_url: {client.base_url}")
print("β³ Attempting client.chat.completions.create() for correction...")
chat_completion = client.chat.completions.create(
model=HF_MODEL,
messages=[
{
"role": "user",
"content": prompt
}
],
max_tokens=2000,
temperature=0.3,
top_p=0.9
)
print(f"β
client.chat.completions.create() returned for correction. Type: {type(chat_completion)}")
corrected_text = chat_completion.choices[0].message.content
print("β
Correction API call successful, content extracted.")
return corrected_text
except Exception as e:
logger.error(f"OpenAI/HF Inference Endpoint error (correction): {str(e)}", exc_info=True) # Added exc_info for full traceback
return f"""<!-- AI correction error: {str(e)} -->
{generate_manual_correction_hints(validation_results, rdf_content)}"""
def generate_manual_suggestions(validation_results: str) -> str:
"""Generate rule-based suggestions when AI is not available"""
suggestions = []
if "Constraint Violation" in validation_results:
suggestions.append("β’ Fix SHACL constraint violations by ensuring required properties are present")
if "Missing property" in validation_results or "missing" in validation_results.lower():
suggestions.append("β’ Add missing required properties (check template requirements)")
if "datatype" in validation_results.lower():
suggestions.append("β’ Correct data type mismatches (ensure proper literal types)")
if "namespace" in validation_results.lower() or "prefix" in validation_results.lower():
suggestions.append("β’ Add missing namespace declarations at the top of your RDF")
if "XML" in validation_results or "syntax" in validation_results.lower():
suggestions.append("β’ Fix XML syntax errors (check for unclosed tags, invalid characters)")
if not suggestions:
suggestions.append("β’ Review detailed validation results for specific issues")
suggestions.append("β’ Ensure your RDF follows the selected template requirements")
suggestions_text = "\n".join(suggestions)
return f"""
π **Manual Analysis:**
{suggestions_text}
π‘ **General Tips:**
β’ Check namespace declarations at the top of your RDF
β’ Ensure all required properties are present
β’ Verify data types match expected formats
β’ Make sure XML structure is well-formed
π§ **Common Fixes:**
β’ Add missing namespace prefixes
β’ Include required properties like rdf:type
β’ Fix malformed URIs or literals
β’ Ensure proper XML syntax
"""
def generate_manual_correction_hints(validation_results: str, rdf_content: str) -> str:
"""Generate manual correction hints when AI is not available"""
return f"""<!-- Manual correction hints based on validation results -->
<!-- Set HF_API_KEY as a Secret in your Space settings for AI-powered corrections -->
{rdf_content}
<!--
VALIDATION ISSUES FOUND:
{validation_results[:500]}...
MANUAL CORRECTION STEPS:
1. Add missing namespace declarations
2. Include required properties (rdf:type, etc.)
3. Fix XML syntax errors
4. Ensure proper URI formats
5. Validate data types
-->"""
def validate_rdf_interface(rdf_content: str, template: str, use_ai: bool = True):
"""Main validation function for Gradio interface"""
if not rdf_content.strip():
return "β Error", "No RDF/XML data provided", "", ""
# Validate RDF
result = validate_rdf_tool(rdf_content, template)
if "error" in result:
return f"β Error: {result['error']}", "", "", ""
status = result["status"]
results_text = result["results"]
if result["conforms"]:
suggestions = "β
No issues found! Your RDF/XML is valid according to the selected template."
corrected_rdf = "<!-- Already valid - no corrections needed -->\n" + rdf_content
else:
if use_ai:
suggestions = get_ai_suggestions(results_text, rdf_content)
corrected_rdf = get_ai_correction(results_text, rdf_content)
else:
suggestions = generate_manual_suggestions(results_text)
corrected_rdf = generate_manual_correction_hints(results_text, rdf_content)
return status, results_text, suggestions, corrected_rdf
def get_rdf_examples(example_type: str = "valid") -> str:
"""
Retrieve example RDF/XML snippets for testing and learning.
This tool provides sample RDF/XML content that can be used to test
the validation system or learn proper RDF structure.
Args:
example_type (str): Type of example ('valid', 'invalid', or 'bibframe')
Returns:
str: RDF/XML example content
"""
examples = {
"valid": SAMPLE_VALID_RDF,
"invalid": SAMPLE_INVALID_RDF,
"bibframe": '''<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bf="http://id.loc.gov/ontologies/bibframe/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<bf:Instance rdf:about="http://example.org/instance/1">
<rdf:type rdf:resource="http://id.loc.gov/ontologies/bibframe/Print"/>
<bf:instanceOf rdf:resource="http://example.org/work/1"/>
<bf:title>
<bf:Title>
<bf:mainTitle>Example Book Title</bf:mainTitle>
</bf:Title>
</bf:title>
<bf:provisionActivity>
<bf:Publication>
<bf:date>2024</bf:date>
<bf:place>
<bf:Place>
<rdfs:label>New York</rdfs:label>
</bf:Place>
</bf:place>
</bf:Publication>
</bf:provisionActivity>
</bf:Instance>
</rdf:RDF>'''
}
return examples.get(example_type, examples["valid"])
# Create Gradio Interface
def create_interface():
"""Create the main Gradio interface"""
# Check API key status dynamically
current_api_key = os.getenv('HF_API_KEY', '')
api_status = "π AI features enabled" if (OPENAI_AVAILABLE and current_api_key) else "β οΈ AI features disabled (set HF_API_KEY)"
with gr.Blocks(
title="RDF Validation Server with AI",
theme=gr.themes.Soft(),
css="""
.status-box {
font-weight: bold;
padding: 10px;
border-radius: 5px;
}
.header-text {
text-align: center;
padding: 20px;
}
"""
) as demo:
# Header
debug_info = f"""
Debug Info:
- OPENAI_AVAILABLE: {OPENAI_AVAILABLE}
- HF_INFERENCE_AVAILABLE: {HF_INFERENCE_AVAILABLE}
- HF_API_KEY set: {'Yes' if current_api_key else 'No'}
- HF_API_KEY length: {len(current_api_key) if current_api_key else 0}
- HF_ENDPOINT_URL: {HF_ENDPOINT_URL}
- HF_MODEL: {HF_MODEL}
"""
gr.HTML(f"""
<div class="header-text">
<h1>π RDF Validation Server with AI</h1>
<p>Validate RDF/XML against SHACL schemas with AI-powered suggestions and corrections</p>
<p><strong>Status:</strong> {api_status}</p>
<details><summary>Debug Info</summary><pre>{debug_info}</pre></details>
</div>
""")
# Main interface
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Input")
rdf_input = gr.Textbox(
label="RDF/XML Content",
placeholder="Paste your RDF/XML content here...",
lines=15,
show_copy_button=True
)
with gr.Row():
template_dropdown = gr.Dropdown(
label="Validation Template",
choices=["monograph", "custom"],
value="monograph",
info="Select the SHACL template to validate against"
)
use_ai_checkbox = gr.Checkbox(
label="Use AI Features",
value=True,
info="Enable AI-powered suggestions and corrections"
)
validate_btn = gr.Button("π Validate RDF", variant="primary", size="lg")
# Examples and controls
gr.Markdown("### π Examples & Tools")
with gr.Row():
example1_btn = gr.Button("β
Valid RDF Example", variant="secondary")
example2_btn = gr.Button("β Invalid RDF Example", variant="secondary")
example3_btn = gr.Button("π BibFrame Example", variant="secondary")
clear_btn = gr.Button("ποΈ Clear All", variant="stop")
# Results section
with gr.Row():
with gr.Column():
gr.Markdown("### π Results")
status_output = gr.Textbox(
label="Validation Status",
interactive=False,
lines=1,
elem_classes=["status-box"]
)
results_output = gr.Textbox(
label="Detailed Validation Results",
interactive=False,
lines=8,
show_copy_button=True
)
suggestions_output = gr.Textbox(
label="π‘ Fix Suggestions",
interactive=False,
lines=8,
show_copy_button=True
)
# Corrected RDF section
with gr.Row():
with gr.Column():
gr.Markdown("### π οΈ AI-Generated Corrections")
corrected_output = gr.Textbox(
label="Corrected RDF/XML",
interactive=False,
lines=15,
show_copy_button=True,
placeholder="Corrected RDF will appear here after validation..."
)
# Event handlers
validate_btn.click(
fn=validate_rdf_interface,
inputs=[rdf_input, template_dropdown, use_ai_checkbox],
outputs=[status_output, results_output, suggestions_output, corrected_output]
)
# Auto-validate on input change (debounced)
rdf_input.change(
fn=validate_rdf_interface,
inputs=[rdf_input, template_dropdown, use_ai_checkbox],
outputs=[status_output, results_output, suggestions_output, corrected_output]
)
# Example buttons
example1_btn.click(
lambda: get_rdf_examples("valid"),
outputs=[rdf_input]
)
example2_btn.click(
lambda: get_rdf_examples("invalid"),
outputs=[rdf_input]
)
example3_btn.click(
lambda: get_rdf_examples("bibframe"),
outputs=[rdf_input]
)
clear_btn.click(
lambda: ("", "", "", "", ""),
outputs=[rdf_input, status_output, results_output, suggestions_output, corrected_output]
)
# Footer with instructions
gr.Markdown("""
---
### π **Deployment Instructions for Hugging Face Spaces:**
1. **Create a new Space** on [Hugging Face](https://huggingface.co/spaces)
2. **Set up your Hugging Face Inference Endpoint** and get the endpoint URL
3. **Set your tokens** in Space settings (use Secrets for security):
- Go to Settings β Repository secrets
- Add: `HF_API_KEY` = `your_huggingface_api_key_here`
- Endpoint is now hardcoded to your specific Inference Endpoint
4. **Upload these files** to your Space repository
5. **Install requirements**: The Space will auto-install from `requirements.txt`
### π§ **MCP Server Mode:**
This app functions as both a web interface AND an MCP server for Claude Desktop and other MCP clients.
**Available MCP Tools (via SSE):**
- `validate_rdf_tool`: Validate RDF/XML against SHACL shapes
- `get_ai_suggestions`: Get AI-powered fix suggestions
- `get_ai_correction`: Generate corrected RDF/XML
- `get_rdf_examples`: Retrieve example RDF snippets
**MCP Connection:**
1. When deployed on Hugging Face Spaces, the MCP server is available at:
`https://your-space-id.hf.space/gradio_api/mcp/sse`
2. Use this URL in Claude Desktop's MCP configuration
3. The app automatically exposes functions with proper docstrings as MCP tools
### π‘ **Features:**
- β
Real-time RDF/XML validation against SHACL schemas
- π€ AI-powered error suggestions and corrections (with HF Inference Endpoint)
- π Built-in examples and templates
- π Auto-validation as you type
- π Copy results with one click
**Note:** AI features require a valid Hugging Face API key (HF_API_KEY) set as a Secret. Manual suggestions are provided as fallback.
""")
return demo
# Launch configuration
if __name__ == "__main__":
# Force verify environment is clean
print("π FINAL CHECK: Verifying problematic environment variables are removed...")
for var in problematic_env_vars:
if var in os.environ:
print(f"β οΈ WARNING: {var} still exists! Value: {os.environ[var]}")
del os.environ[var]
print(f"ποΈ FORCE REMOVED: {var}")
else:
print(f"β
{var} confirmed not in environment")
demo = create_interface()
# Configuration for different environments
port = int(os.getenv('PORT', 7860)) # Hugging Face uses PORT env variable
demo.launch(
server_name="0.0.0.0", # Important for external hosting
server_port=port, # Use environment PORT or default to 7860
share=False, # Don't create gradio.live links in production
show_error=True, # Show errors in the interface
show_api=True, # Enable API endpoints
allowed_paths=["."] # Allow serving files from current directory
)
|