Spaces:
Running
Running
File size: 50,040 Bytes
8c22960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 |
import streamlit as st
import pandas as pd
import numpy as np
import os
import json
import gzip
import re
from urllib.parse import quote, unquote
# Updated CSS styles to use default background
CUSTOM_CSS = """
<style>
/* Set default background color */
body {
background-color: white !important;
}
.stApp {
background-color: white !important;
}
h1 {
color: #2E4053;
font-family: 'Helvetica Neue', sans-serif;
font-size: 2.8rem !important;
border-bottom: 3px solid #3498DB;
padding-bottom: 0.3em;
}
h2, h3, h4 {
color: #2C3E50 !important;
font-family: 'Arial Rounded MT Bold', sans-serif;
}
.metric-card {
background: linear-gradient(145deg, #F8F9FA 0%, #FFFFFF 100%);
border-radius: 12px;
padding: 1.2rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
border: 1px solid #E0E7FF;
transition: transform 0.2s;
}
.metric-card:hover {
transform: translateY(-2px);
}
.citation-badge:hover::after,
.influential-badge:hover::after {
content: attr(title);
position: absolute;
bottom: calc(100% + 5px);
left: 50%;
transform: translateX(-50%);
background-color: rgba(0, 0, 0, 0.8);
color: #fff;
padding: 5px 10px;
border-radius: 4px;
white-space: nowrap;
z-index: 100;
opacity: 0;
pointer-events: none;
transition: opacity 0.3s ease;
}
.citation-badge:hover::after,
.influential-badge:hover::after {
opacity: 1;
}
.path-nav {
color: #6C757D;
font-size: 0.95rem;
padding: 0.8rem 1rem;
background: #F8F9FA;
border-radius: 8px;
margin: 0.5rem 0; /* 减少上下margin */
}
.stButton>button {
background: #3498DB !important;
color: white !important;
border-radius: 8px !important;
padding: 8px 20px !important;
border: none !important;
transition: all 0.3s !important;
}
.stButton>button:hover {
background: #2980B9 !important;
transform: scale(1.05);
box-shadow: 0 4px 8px rgba(52, 152, 219, 0.3);
}
.paper-card, .cluster-card {
background: white;
border-radius: 10px;
padding: 1.5rem;
margin: 1rem 0;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.06);
border: 1px solid #EAEDF3;
overflow: hidden;
}
/* 调整标题的字号 - 增大cluster title */
.paper-title, .cluster-title {
color: #2C3E50;
font-size: 1.3rem !important; /* 增大原来的字号 */
font-weight: 700; /* 加粗 */
margin-bottom: 0.5rem;
cursor: pointer;
}
.paper-abstract, .cluster-abstract {
color: #6C757D;
line-height: 1.6;
font-size: 0.95rem;
margin: 1rem 0;
padding: 0.8rem;
background: #F9FAFB;
border-radius: 8px;
border-left: 4px solid #3498DB;
}
/* 减少expander之间的间距 */
.streamlit-expanderHeader {
font-weight: 600 !important;
color: #2C3E50 !important;
margin-top: 0.5rem !important;
margin-bottom: 0.5rem !important;
}
/* 调整expander的内部和外部间距 */
.streamlit-expander {
margin-top: 0.5rem !important;
margin-bottom: 0.5rem !important;
}
/* 更紧凑的expander内容区 */
.streamlit-expanderContent {
background: #FAFAFA;
border-radius: 0 0 8px 8px;
border: 1px solid #EAEDF3;
border-top: none;
padding: 8px 12px !important; /* 减少内部padding */
}
/* Additional styles */
.paper-section, .cluster-section {
margin-top: 20px;
padding: 15px;
border-radius: 8px;
background: #FAFAFA;
border-left: 4px solid #3498DB;
}
.paper-section-title, .cluster-section-title {
color: #2C3E50;
font-weight: 600;
margin-bottom: 10px;
border-bottom: 2px solid #EEE;
padding-bottom: 5px;
}
.section-problem {
border-left-color: #3498DB;
}
.section-solution {
border-left-color: #2ECC71;
}
.section-results {
border-left-color: #9B59B6;
}
.label {
font-weight: 600;
color: #34495E;
margin-bottom: 5px;
}
.value-box {
background: #F8F9FA;
padding: 10px;
border-radius: 5px;
margin-bottom: 10px;
font-size: 0.95rem;
color: #333;
line-height: 1.5;
}
/* Citation badge styles */
.citation-badge, .influential-badge {
display: inline-flex;
align-items: center;
padding: 4px 8px;
border-radius: 6px;
font-size: 0.85rem;
font-weight: 600;
gap: 4px;
white-space: nowrap;
}
.citation-badge {
background: #EBF5FB;
color: #2980B9;
}
.influential-badge {
background: #FCF3CF;
color: #F39C12;
}
.citation-icon, .influential-icon {
font-size: 1rem;
}
/* 修改后的引用统计格式 */
.citation-stats, .influential-stats {
display: flex;
align-items: center;
padding: 4px 12px;
border-radius: 6px;
font-size: 0.85rem;
margin-bottom: 6px;
white-space: nowrap;
}
.citation-stats {
background: #EBF5FB;
color: #2980B9;
}
.influential-stats {
background: #FCF3CF;
color: #F39C12;
}
.stats-divider {
margin: 0 6px;
color: rgba(0,0,0,0.2);
}
/* Field of study badge */
.field-badge {
display: inline-block;
background: #F1F8E9;
color: #558B2F;
padding: 3px 10px;
border-radius: 16px;
font-size: 0.75rem;
font-weight: 500;
border: 1px solid #C5E1A5;
}
/* JSON value display */
.json-value {
background: #F8F9FA;
padding: 10px;
border-radius: 6px;
margin-bottom: 10px;
white-space: pre-wrap;
font-family: monospace;
font-size: 0.9rem;
line-height: 1.5;
color: #2C3E50;
overflow-x: auto;
}
/* Collapsible content */
.cluster-content {
display: none;
}
.cluster-content.show {
display: block;
}
/* 重新设计集群标题区布局 */
.cluster-header {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
align-items: center;
padding-bottom: 10px;
border-bottom: 1px solid #eee;
margin-bottom: 0px;
}
/* 左侧标题和集群信息 */
.cluster-header-left {
display: flex;
align-items: center;
flex: 1;
min-width: 200px;
}
/* 中间区域用于摘要展开器 */
.cluster-header-middle {
display: flex;
flex: 0 0 auto;
margin: 0 15px;
}
/* 右侧统计数据 */
.cluster-badge-container {
display: flex;
flex-wrap: wrap;
gap: 6px;
justify-content: flex-end;
}
/* 子集群查看按钮 */
.view-button {
margin-left: 15px;
}
/* 调整h3标题的上下margin */
h3 {
margin-top: 1rem !important;
margin-bottom: 0.5rem !important;
}
/* 调整内容区块的上下margin */
.stBlock {
margin-top: 0.5rem !important;
margin-bottom: 0.5rem !important;
}
/* 内联expander按钮样式 */
.inline-expander-button {
background: #E3F2FD;
border: 1px solid #BBDEFB;
border-radius: 4px;
padding: 4px 8px;
font-size: 0.85rem;
color: #1976D2;
cursor: pointer;
display: inline-flex;
align-items: center;
transition: all 0.2s;
}
.inline-expander-button:hover {
background: #BBDEFB;
}
/* 导航路径中的按钮样式 */
.path-nav-button {
display: inline-block;
margin: 0 5px;
padding: 5px 10px;
background: #E3F2FD;
border-radius: 5px;
color: #1976D2;
cursor: pointer;
font-weight: 500;
font-size: 0.9rem;
border: none;
transition: all 0.2s;
}
.path-nav-button:hover {
background: #BBDEFB;
}
/* 路径导航容器样式 */
.path-nav {
color: #6C757D;
font-size: 0.95rem;
padding: 0.8rem 1rem;
background: #F8F9FA;
border-radius: 8px;
margin: 0.8rem 0;
}
/* Paper count badge style */
.paper-count-badge {
display: inline-flex;
align-items: center;
margin-left: 12px;
background: #E8F4FD;
color: #2980B9;
padding: 3px 8px;
border-radius: 12px;
font-size: 0.85rem;
font-weight: 500;
}
</style>
<script>
function toggleClusterContent(id) {
const content = document.getElementById('cluster-content-' + id);
if (content) {
content.classList.toggle('show');
}
}
</script>
"""
def get_hierarchy_files():
hierarchy_dir = 'hierarchies'
if not os.path.exists(hierarchy_dir):
return []
files = [f for f in os.listdir(hierarchy_dir) if f.endswith('.json')]
print(f"Found files: {files}")
return files
def parse_filename(filename):
"""Parse hierarchy filename to extract metadata using improved patterns."""
filename = filename.replace('.json', '')
parts = filename.split('_')
# Basic fields that should be consistent
if len(parts) < 6:
return {
'date': 'Unknown',
'embedder': 'Unknown',
'summarizer': 'Unknown',
'clustermethod': 'Unknown',
'contribution_type': 'Unknown',
'building_method': 'Unknown',
'clusterlevel': 'Unknown',
'clusterlevel_array': [],
'level_count': 0,
'random_seed': 'Unknown'
}
# These are consistent across formats
date_str = parts[1]
embedder = parts[2]
summarizer = parts[3]
clustermethod = parts[4]
# parts[5] is typically "emb" placeholder
contribution_type = parts[6]
# Special handling for building methods
# Check for compound building methods
building_method = None
clusterlevel_str = None
seed = None
# Handle different cases for building method and what follows
if len(parts) > 7:
if parts[7] == "bidirectional":
building_method = "bidirectional"
if len(parts) > 8:
# The cluster level is next
clusterlevel_str = parts[8]
if len(parts) > 9:
seed = parts[9]
elif parts[7] == "top" and len(parts) > 8 and parts[8] == "down":
building_method = "top_down"
if len(parts) > 9:
clusterlevel_str = parts[9]
if len(parts) > 10:
seed = parts[10]
elif parts[7] == "bottom" and len(parts) > 8 and parts[8] == "up":
building_method = "bottom_up"
if len(parts) > 9:
clusterlevel_str = parts[9]
if len(parts) > 10:
seed = parts[10]
# Default case - building method is not compound
else:
building_method = parts[7]
if len(parts) > 8:
clusterlevel_str = parts[8]
if len(parts) > 9:
seed = parts[9]
# Format date with slashes for better readability
formatted_date = f"{date_str[:4]}/{date_str[4:6]}/{date_str[6:]}" if len(date_str) == 8 else date_str
# Process cluster levels
clusterlevel_array = clusterlevel_str.split('-') if clusterlevel_str else []
level_count = len(clusterlevel_array)
return {
'date': formatted_date,
'embedder': embedder,
'summarizer': summarizer,
'clustermethod': clustermethod,
'contribution_type': contribution_type,
'building_method': building_method or 'Unknown',
'clusterlevel': clusterlevel_str or 'Unknown',
'clusterlevel_array': clusterlevel_array,
'level_count': level_count,
'random_seed': seed or 'Unknown'
}
def format_hierarchy_option(filename):
info = parse_filename(filename)
levels_str = "×".join(info['clusterlevel_array'])
return f"{info['date']} - {info['clustermethod']} ({info['embedder']}/{info['summarizer']}, {info['contribution_type']}, {info['building_method']}, {info['level_count']} levels: {levels_str}, seed: {info['random_seed']})"
@st.cache_data
def load_hierarchy_data(filename):
"""Load hierarchy data with support for compressed files"""
filepath = os.path.join('hierarchies', filename)
# 检查是否存在未压缩版本
if os.path.exists(filepath):
with open(filepath, 'r') as f:
return json.load(f)
# 检查是否存在 gzip 压缩版本
gzip_filepath = filepath + '.gz'
if os.path.exists(gzip_filepath):
try:
with gzip.open(gzip_filepath, 'rt') as f:
return json.load(f)
except Exception as e:
st.error(f"Error loading compressed file {gzip_filepath}: {str(e)}")
return {"clusters": []}
st.error(f"Could not find hierarchy file: {filepath} or {gzip_filepath}")
return {"clusters": []}
def get_cluster_statistics(clusters):
"""获取集群统计信息,包括悬停提示"""
def count_papers(node):
if "children" not in node:
return 0
children = node["children"]
if not children:
return 0
if "paper_id" in children[0]:
return len(children)
return sum(count_papers(child) for child in children)
cluster_count = len(clusters)
paper_counts = []
for cluster, _ in clusters:
paper_count = count_papers(cluster)
paper_counts.append(paper_count)
if paper_counts:
total_papers = sum(paper_counts)
average_papers = total_papers / cluster_count if cluster_count > 0 else 0
return {
'Total Clusters': {'value': cluster_count, 'tooltip': 'Total number of clusters at this level'},
'Total Papers': {'value': total_papers, 'tooltip': 'Total number of papers across all clusters at this level'},
'Average Papers per Cluster': {'value': round(average_papers, 2), 'tooltip': 'Average number of papers per cluster'},
'Median Papers': {'value': round(np.median(paper_counts), 2), 'tooltip': 'Median number of papers per cluster'},
'Standard Deviation': {'value': round(np.std(paper_counts), 2), 'tooltip': 'Standard deviation of paper counts across clusters'},
'Max Papers in Cluster': {'value': max(paper_counts), 'tooltip': 'Maximum number of papers in any single cluster'},
'Min Papers in Cluster': {'value': min(paper_counts), 'tooltip': 'Minimum number of papers in any single cluster'}
}
return {
'Total Clusters': {'value': cluster_count, 'tooltip': 'Total number of clusters at this level'},
'Total Papers': {'value': 0, 'tooltip': 'Total number of papers across all clusters at this level'},
'Average Papers per Cluster': {'value': 0, 'tooltip': 'Average number of papers per cluster'},
'Median Papers': {'value': 0, 'tooltip': 'Median number of papers per cluster'},
'Standard Deviation': {'value': 0, 'tooltip': 'Standard deviation of paper counts across clusters'},
'Max Papers in Cluster': {'value': 0, 'tooltip': 'Maximum number of papers in any single cluster'},
'Min Papers in Cluster': {'value': 0, 'tooltip': 'Minimum number of papers in any single cluster'}
}
def calculate_citation_metrics(node):
"""Calculate total, average, and maximum citation and influential citation counts for a cluster."""
total_citations = 0
total_influential_citations = 0
paper_count = 0
citation_values = [] # 存储每篇论文的引用数
influential_citation_values = [] # 存储每篇论文的有影响力引用数
def process_node(n):
nonlocal total_citations, total_influential_citations, paper_count
if "children" not in n or n["children"] is None:
return
children = n["children"]
if not children:
return
# If this node contains papers directly
if children and len(children) > 0 and isinstance(children[0], dict) and "paper_id" in children[0]:
for paper in children:
if not isinstance(paper, dict):
continue
semantic_scholar = paper.get('semantic_scholar', {}) or {}
citations = semantic_scholar.get('citationCount', 0)
influential_citations = semantic_scholar.get('influentialCitationCount', 0)
total_citations += citations
total_influential_citations += influential_citations
paper_count += 1
citation_values.append(citations)
influential_citation_values.append(influential_citations)
else:
# Recursively process child clusters
for child in children:
if isinstance(child, dict):
process_node(child)
process_node(node)
# 计算平均值和最大值
avg_citations = round(total_citations / paper_count, 2) if paper_count > 0 else 0
avg_influential_citations = round(total_influential_citations / paper_count, 2) if paper_count > 0 else 0
max_citations = max(citation_values) if citation_values else 0
max_influential_citations = max(influential_citation_values) if influential_citation_values else 0
return {
'total_citations': total_citations,
'avg_citations': avg_citations,
'max_citations': max_citations,
'total_influential_citations': total_influential_citations,
'avg_influential_citations': avg_influential_citations,
'max_influential_citations': max_influential_citations,
'paper_count': paper_count
}
def find_clusters_in_path(data, path):
"""Find clusters or papers at the given path in the hierarchy."""
if not data or "clusters" not in data:
return []
clusters = data["clusters"]
current_clusters = []
if not path:
return [(cluster, []) for cluster in clusters]
current = clusters
for i, p in enumerate(path):
found = False
for cluster in current:
if cluster.get("cluster_id") == p:
if "children" not in cluster or not cluster["children"]:
# No children found, return empty list
return []
current = cluster["children"]
found = True
if i == len(path) - 1:
# We're at the target level
if current and len(current) > 0 and isinstance(current[0], dict) and "paper_id" in current[0]:
# This level contains papers
return [(paper, path) for paper in current]
else:
# This level contains subclusters
current_clusters = []
for c in current:
if isinstance(c, dict):
cluster_id = c.get("cluster_id")
if cluster_id is not None:
current_clusters.append((c, path + [cluster_id]))
return current_clusters
break
if not found:
# Path segment not found
return []
return current_clusters
def parse_json_abstract(abstract_text):
"""Parse JSON formatted abstract string into a beautifully formatted HTML string"""
try:
abstract_json = json.loads(abstract_text)
# Create a formatted display for the structured abstract
if "Problem" in abstract_json:
problem = abstract_json["Problem"]
return f"""
<div class='section-problem paper-section'>
<div class='paper-section-title'>Problem</div>
<div class='label'>Domain:</div>
<div class='value-box'>{problem.get('overarching problem domain', 'N/A')}</div>
<div class='label'>Challenges:</div>
<div class='value-box'>{problem.get('challenges/difficulties', 'N/A')}</div>
<div class='label'>Goal:</div>
<div class='value-box'>{problem.get('research question/goal', 'N/A')}</div>
</div>
"""
return abstract_text
except (json.JSONDecodeError, ValueError, TypeError):
# If not valid JSON, return the original text
return abstract_text
def display_path_details(path, data, level_count):
if not path:
return
st.markdown("### Path Details")
current = data["clusters"]
# Dynamically generate level labels and containers
for i, cluster_id in enumerate(path):
# 修改这里:使用 i + 1 作为层级编号
level_number = i + 1 # 从1开始计算层级,顶层是Level 1
indent = i * 32 # Indent 32 pixels per level
for c in current:
if c["cluster_id"] == cluster_id:
# Create a container with proper indentation
st.markdown(f"""
<div style='margin-left: {indent}px; margin-bottom: 10px;'>
</div>
""", unsafe_allow_html=True)
# Add extra spacing at the bottom
st.markdown("<div style='margin-bottom: 25px;'></div>", unsafe_allow_html=True)
# Create a row with cluster name and level button
col1, col2 = st.columns([0.85, 0.15])
with col1:
st.markdown(f"""
<div style='display: flex; align-items: center;'>
<div style='width: 12px; height: 12px;
border-radius: 50%; background: #3B82F6;
margin-right: 8px;'></div>
<h4 style='font-size: 1.15rem; font-weight: 600;
color: #1F2937; margin: 0;'>
Cluster {c["cluster_id"]}: {c["title"]}
</h4>
</div>
""", unsafe_allow_html=True)
with col2:
button_clicked = st.button(f'Level {level_number}', key=f'level_btn_{i}_{c["cluster_id"]}')
if button_clicked:
st.session_state.path = path[:i]
new_params = {}
new_params['hierarchy'] = st.query_params['hierarchy']
if st.session_state.path:
new_params['path'] = st.session_state.path
st.query_params.clear()
for key, value in new_params.items():
if isinstance(value, list):
for v in value:
st.query_params[key] = v
else:
st.query_params[key] = value
st.rerun()
# Calculate left margin for expander content to align with the header
# Use an extra container with margin to create the indentation
with st.container():
st.markdown(f"""
<div style='margin-left: {indent}px; width: calc(100% - {indent}px);'>
</div>
""", unsafe_allow_html=True)
# Remove the key parameter that was causing the error
with st.expander("📄 Show Cluster Details", expanded=False):
# Parse abstract if it's in JSON format
abstract_content = parse_json_abstract(c["abstract"])
st.markdown(f"""
<div style='color: #374151; line-height: 1.6;'>
{abstract_content}
</div>
""", unsafe_allow_html=True)
current = c["children"]
break
def display_paper(item):
"""Display detailed paper information including problem, solution, and results with semantic scholar info"""
# Check for semantic scholar data with proper fallbacks
semantic_scholar = item.get('semantic_scholar', {}) or {}
url = semantic_scholar.get('url', '')
citation_count = semantic_scholar.get('citationCount', 0)
influential_citation_count = semantic_scholar.get('influentialCitationCount', 0)
fields_of_study = semantic_scholar.get('fieldsOfStudy', []) or []
# Generate field badges HTML
field_badges_html = ""
for field in fields_of_study:
field_badges_html += f"<span class='field-badge' title='Field of study'>{field}</span> "
# Basic information section with URL link and citation counts - Always visible
st.markdown(f"""
<div class='paper-card'>
<div style='display: flex; justify-content: space-between; align-items: flex-start;'>
<div class='paper-title' style='flex-grow: 1;'>
{item.get('title', 'Untitled Paper')}
<a href="{url}" target="_blank"
style='font-size: 0.9em; margin-left: 8px;
color: #3498DB; text-decoration: none;
transition: all 0.3s;'
title='View paper on Semantic Scholar'>
🔗
</a>
</div>
<div style='display: flex; align-items: center; gap: 12px;'>
<div class='citation-badge' title='Number of times this paper has been cited by other papers.'>
<span class='citation-icon'>⭐</span> Citations: {citation_count}
</div>
<div class='influential-badge' title='Number of times this paper has been cited by influential papers. Influential citation means that the cited publication has a significant impact on the citing publication.'>
<span class='influential-icon'>🔥</span> Influential Citations: {influential_citation_count}
</div>
</div>
</div>
""", unsafe_allow_html=True)
# One main expander for all detailed information - Default collapsed
with st.expander("📑 Show Detailed Information", expanded=False):
# Abstract section
st.markdown("""
<div style='margin-top: 15px; margin-bottom: 20px;'>
<h4 style='color: #2C3E50; border-bottom: 2px solid #3498DB; padding-bottom: 8px;'>
📄 Abstract
</h4>
</div>
""", unsafe_allow_html=True)
abstract_text = item.get('abstract', 'No abstract available')
st.markdown(f"<div class='paper-abstract'>{abstract_text}</div>", unsafe_allow_html=True)
# Problem section
if 'problem' in item and item['problem']:
st.markdown("""
<div style='margin-top: 25px; margin-bottom: 20px;'>
<h4 style='color: #2C3E50; border-bottom: 2px solid #3498DB; padding-bottom: 8px;'>
🔍 Problem Details
</h4>
</div>
""", unsafe_allow_html=True)
problem = item['problem']
cols = st.columns([1, 2])
with cols[0]:
st.markdown("""
<div style='font-weight: 600; color: #34495E; margin-bottom: 5px;'>
Problem Domain
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div style='font-weight: 600; color: #34495E; margin-top: 15px; margin-bottom: 5px;'>
Challenges/Difficulties
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div style='font-weight: 600; color: #34495E; margin-top: 15px; margin-bottom: 5px;'>
Research Question/Goal
</div>
""", unsafe_allow_html=True)
with cols[1]:
st.markdown(f"""
<div style='background: #F8F9FA; padding: 10px; border-radius: 5px;
border-left: 4px solid #3498DB;'>
{problem.get('overarching problem domain', 'Not specified')}
</div>
""", unsafe_allow_html=True)
st.markdown(f"""
<div style='background: #F8F9FA; padding: 10px; border-radius: 5px;
border-left: 4px solid #E74C3C; margin-top: 10px;'>
{problem.get('challenges/difficulties', 'Not specified')}
</div>
""", unsafe_allow_html=True)
st.markdown(f"""
<div style='background: #F8F9FA; padding: 10px; border-radius: 5px;
border-left: 4px solid #2ECC71; margin-top: 10px;'>
{problem.get('research question/goal', 'Not specified')}
</div>
""", unsafe_allow_html=True)
# Solution section
if 'solution' in item and item['solution']:
st.markdown("""
<div style='margin-top: 25px; margin-bottom: 20px;'>
<h4 style='color: #2C3E50; border-bottom: 2px solid #2ECC71; padding-bottom: 8px;'>
💡 Solution Details
</h4>
</div>
""", unsafe_allow_html=True)
solution = item['solution']
cols = st.columns([1, 2])
with cols[0]:
st.markdown("""
<div style='font-weight: 600; color: #34495E; margin-bottom: 5px;'>
Solution Domain
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div style='font-weight: 600; color: #34495E; margin-top: 15px; margin-bottom: 5px;'>
Solution Approach
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div style='font-weight: 600; color: #34495E; margin-top: 15px; margin-bottom: 5px;'>
Novelty of Solution
</div>
""", unsafe_allow_html=True)
with cols[1]:
st.markdown(f"""
<div style='background: #F8F9FA; padding: 10px; border-radius: 5px;
border-left: 4px solid #3498DB;'>
{solution.get('overarching solution domain', 'Not specified')}
</div>
""", unsafe_allow_html=True)
st.markdown(f"""
<div style='background: #F8F9FA; padding: 10px; border-radius: 5px;
border-left: 4px solid #9B59B6; margin-top: 10px;'>
{solution.get('solution approach', 'Not specified')}
</div>
""", unsafe_allow_html=True)
st.markdown(f"""
<div style='background: #F8F9FA; padding: 10px; border-radius: 5px;
border-left: 4px solid #F1C40F; margin-top: 10px;'>
{solution.get('novelty of the solution', 'Not specified')}
</div>
""", unsafe_allow_html=True)
# Results section
if 'results' in item and item['results']:
st.markdown("""
<div style='margin-top: 25px; margin-bottom: 20px;'>
<h4 style='color: #2C3E50; border-bottom: 2px solid #9B59B6; padding-bottom: 8px;'>
📊 Results Details
</h4>
</div>
""", unsafe_allow_html=True)
results = item['results']
cols = st.columns([1, 2])
with cols[0]:
st.markdown("""
<div style='font-weight: 600; color: #34495E; margin-bottom: 5px;'>
Findings/Results
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div style='font-weight: 600; color: #34495E; margin-top: 15px; margin-bottom: 5px;'>
Potential Impact
</div>
""", unsafe_allow_html=True)
with cols[1]:
st.markdown(f"""
<div style='background: #F8F9FA; padding: 10px; border-radius: 5px;
border-left: 4px solid #3498DB;'>
{results.get('findings/results', 'Not specified')}
</div>
""", unsafe_allow_html=True)
st.markdown(f"""
<div style='background: #F8F9FA; padding: 10px; border-radius: 5px;
border-left: 4px solid #E67E22; margin-top: 10px;'>
{results.get('potential impact of the results', 'Not specified')}
</div>
""", unsafe_allow_html=True)
# Author information
if 'semantic_scholar' in item and item['semantic_scholar'] and 'authors' in item['semantic_scholar'] and item['semantic_scholar']['authors']:
st.markdown("""
<div style='margin-top: 25px; margin-bottom: 20px;'>
<h4 style='color: #2C3E50; border-bottom: 2px solid #E67E22; padding-bottom: 8px;'>
👥 Authors
</h4>
</div>
""", unsafe_allow_html=True)
authors = item['semantic_scholar']['authors'] or []
for author in authors:
if not isinstance(author, dict):
continue
st.markdown(f"""
<div style='display: flex; margin-bottom: 15px; padding-bottom: 10px; border-bottom: 1px solid #eee;'>
<div style='flex: 1;'>
<div style='font-weight: 600; font-size: 1.05rem;'>{author.get('name', 'Unknown')}</div>
<div style='color: #666; margin-top: 3px;'>Author ID: {author.get('authorId', 'N/A')}</div>
</div>
<div style='display: flex; gap: 15px;'>
<div title='Papers'>
<span style='font-size: 0.85rem; color: #666;'>Papers</span>
<div style='font-weight: 600; color: #3498DB;'>{author.get('paperCount', 0)}</div>
</div>
<div title='Citations'>
<span style='font-size: 0.85rem; color: #666;'>Citations</span>
<div style='font-weight: 600; color: #3498DB;'>{author.get('citationCount', 0)}</div>
</div>
<div title='h-index'>
<span style='font-size: 0.85rem; color: #666;'>h-index</span>
<div style='font-weight: 600; color: #3498DB;'>{author.get('hIndex', 0)}</div>
</div>
</div>
</div>
""", unsafe_allow_html=True)
# Close paper-card div
st.markdown("</div>", unsafe_allow_html=True)
def display_cluster(item, path):
"""Display a collapsible cluster with citation metrics integrated into the header, including abstract expander and buttons"""
# Generate a unique ID for this cluster for the expander functionality
cluster_id = item['cluster_id']
unique_id = f"{cluster_id}_{'-'.join(map(str, path))}"
# Calculate citation metrics using the updated function
citation_metrics = calculate_citation_metrics(item)
# Parse the abstract
abstract_content = parse_json_abstract(item['abstract'])
# 根据是否包含子项来设置按钮文本和行为
has_children = "children" in item and item["children"]
if has_children:
count = citation_metrics['paper_count'] if "paper_id" in item["children"][0] else len(item["children"])
next_level_items = item["children"]
is_next_level_papers = len(next_level_items) > 0 and "paper_id" in next_level_items[0]
btn_text = f'View Papers ({count})' if is_next_level_papers else f'View Sub-clusters ({count})'
# 标题和论文数量显示 - 确保它们在同一水平线上
st.markdown(f"""
<div style='display: flex; align-items: center;'>
<div class='cluster-title' style='margin: 0; font-weight: 700; font-size: 1.3rem;'>
{item['title']}
</div>
<div style='display: inline-flex; align-items: center; margin-left: 12px;
background: #F4F6F9; color: #566573; padding: 2px 10px;
border-radius: 6px; font-size: 0.95rem; font-weight: 500;'>
<span style='margin-right: 4px;'>📑</span>{citation_metrics['paper_count']} papers
</div>
</div>
""", unsafe_allow_html=True)
# 使用两列布局
cols = st.columns([8, 2])
with cols[0]: # 统计数据区域
# 引用统计格式:使用管道符号分隔
st.markdown(f"""
<div>
<div class='citation-stats'>
<span style='font-weight: bold; margin-right: 5px;'>⭐</span> Citations:
Total {citation_metrics['total_citations']} <span class='stats-divider'>|</span>
Avg {citation_metrics['avg_citations']} <span class='stats-divider'>|</span>
Max {citation_metrics['max_citations']}
</div>
<div class='influential-stats'>
<span style='font-weight: bold; margin-right: 5px;'>🔥</span> Influential Citations:
Total {citation_metrics['total_influential_citations']} <span class='stats-divider'>|</span>
Avg {citation_metrics['avg_influential_citations']} <span class='stats-divider'>|</span>
Max {citation_metrics['max_influential_citations']}
</div>
</div>
""", unsafe_allow_html=True)
# 创建摘要展开器 - 修改文本为"Cluster Summary"
with st.expander("📄 Cluster Summary", expanded=False):
st.markdown(f"""
<div class='cluster-abstract'>{abstract_content}</div>
""", unsafe_allow_html=True)
with cols[1]: # 查看按钮
# 如果有子集群或论文,添加查看按钮
if has_children:
# 使用动态生成的按钮文本,而不是固定的"View Sub-Cluster"
if st.button(btn_text, key=f"btn_{unique_id}"):
st.session_state.path.append(item['cluster_id'])
st.rerun()
# 创建一个分隔线
st.markdown("<hr style='margin: 0.5rem 0; border-color: #eee;'>", unsafe_allow_html=True)
def main():
st.set_page_config(
layout="wide",
page_title="Paper Clusters Explorer",
initial_sidebar_state="expanded",
menu_items=None
)
# 设置浅色主题
st.markdown("""
<script>
var elements = window.parent.document.querySelectorAll('.stApp');
elements[0].classList.add('light');
elements[0].classList.remove('dark');
</script>
""", unsafe_allow_html=True)
st.markdown(CUSTOM_CSS, unsafe_allow_html=True)
hierarchy_files = get_hierarchy_files()
if not hierarchy_files:
st.error("No hierarchy files found in /hierarchies directory")
return
# Manage file selection via query params
current_url = st.query_params.get('hierarchy', None)
current_file = unquote(current_url) + '.json' if current_url else None
hierarchy_options = {format_hierarchy_option(f): f for f in hierarchy_files}
selected_option = st.selectbox(
'Select Hierarchy',
options=list(hierarchy_options.keys()),
index=list(hierarchy_options.values()).index(current_file) if current_file else 0
)
selected_file = hierarchy_options[selected_option]
# Save selected file in query params
if selected_file != current_file:
st.query_params['hierarchy'] = quote(selected_file.replace('.json', ''))
data = load_hierarchy_data(selected_file)
info = parse_filename(selected_file)
# Hierarchy metadata and navigation state
with st.expander("📋 Hierarchy Metadata", expanded=False):
# Create a grid layout for metadata
col1, col2, col3 = st.columns(3)
with col1:
st.markdown(f"""
<div class='metric-card'>
<h4 style='margin-top: 0; color: #2C3E50; font-size: 0.9rem;'>Date</h4>
<p style='font-size: 0.9rem; font-weight: 600; color: #3498DB;'>{info['date']}</p>
</div>
<div class='metric-card' style='margin-top: 10px;'>
<h4 style='margin-top: 0; color: #2C3E50; font-size: 0.9rem;'>Clustering Method</h4>
<p style='font-size: 0.9rem; font-weight: 600; color: #3498DB;'>{info['clustermethod']}</p>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown(f"""
<div class='metric-card'>
<h4 style='margin-top: 0; color: #2C3E50; font-size: 0.9rem;'>Embedder / Summarizer</h4>
<p style='font-size: 0.9rem; font-weight: 600; color: #3498DB;'>{info['embedder']} / {info['summarizer']}</p>
</div>
<div class='metric-card' style='margin-top: 10px;'>
<h4 style='margin-top: 0; color: #2C3E50; font-size: 0.9rem;'>Contribution Type</h4>
<p style='font-size: 0.9rem; font-weight: 600; color: #3498DB;'>{info['contribution_type']}</p>
</div>
""", unsafe_allow_html=True)
with col3:
st.markdown(f"""
<div class='metric-card'>
<h4 style='margin-top: 0; color: #2C3E50; font-size: 0.9rem;'>Building Method</h4>
<p style='font-size: 0.9rem; font-weight: 600; color: #3498DB;'>{info['building_method']}</p>
</div>
<div class='metric-card' style='margin-top: 10px;'>
<h4 style='margin-top: 0; color: #2C3E50; font-size: 0.9rem;'>Cluster Levels</h4>
<p style='font-size: 0.9rem; font-weight: 600; color: #3498DB;'>{info['clusterlevel']} (Total: {info['level_count']})</p>
</div>
""", unsafe_allow_html=True)
if 'path' not in st.session_state:
path_params = st.query_params.get_all('path')
st.session_state.path = [p for p in path_params if p]
current_clusters = find_clusters_in_path(data, st.session_state.path)
current_level = len(st.session_state.path)
total_levels = info['level_count']
level_name = f'Level {current_level + 1}' if current_level < total_levels else 'Papers'
is_paper_level = current_level >= total_levels or (current_clusters and "paper_id" in current_clusters[0][0])
if not is_paper_level and current_clusters:
with st.expander("📊 Cluster Statistics", expanded=False):
stats = get_cluster_statistics(current_clusters)
# Create a 3x2 grid for six small metric cards
row1_col1, row1_col2, row1_col3 = st.columns(3)
row2_col1, row2_col2, row2_col3 = st.columns(3)
# Row 1 - First 3 metrics
with row1_col1:
st.markdown(f"""
<div class='metric-card' style='padding: 0.8rem;'>
<h4 style='margin-top: 0; margin-bottom: 5px; color: #2C3E50; font-size: 0.85rem;'>Total Clusters</h4>
<p style='font-size: 0.9rem; font-weight: 600; color: #3498DB; margin: 0;'>{stats['Total Clusters']['value']}</p>
</div>
""", unsafe_allow_html=True)
with row1_col2:
st.markdown(f"""
<div class='metric-card' style='padding: 0.8rem;'>
<h4 style='margin-top: 0; margin-bottom: 5px; color: #2C3E50; font-size: 0.85rem;'>Total Papers</h4>
<p style='font-size: 0.9rem; font-weight: 600; color: #3498DB; margin: 0;'>{stats['Total Papers']['value']}</p>
</div>
""", unsafe_allow_html=True)
with row1_col3:
st.markdown(f"""
<div class='metric-card' style='padding: 0.8rem;'>
<h4 style='margin-top: 0; margin-bottom: 5px; color: #2C3E50; font-size: 0.85rem;'>Avg Papers/Cluster</h4>
<p style='font-size: 0.9rem; font-weight: 600; color: #3498DB; margin: 0;'>{stats['Average Papers per Cluster']['value']}</p>
</div>
""", unsafe_allow_html=True)
# Row 2 - Next 3 metrics
with row2_col1:
st.markdown(f"""
<div class='metric-card' style='padding: 0.8rem; margin-bottom: 15px;'>
<h4 style='margin-top: 0; margin-bottom: 5px; color: #2C3E50; font-size: 0.85rem;'>Median Papers</h4>
<p style='font-size: 0.9rem; font-weight: 600; color: #3498DB; margin: 0;'>{stats['Median Papers']['value']}</p>
</div>
""", unsafe_allow_html=True)
with row2_col2:
st.markdown(f"""
<div class='metric-card' style='padding: 0.8rem; margin-bottom: 15px;'>
<h4 style='margin-top: 0; margin-bottom: 5px; color: #2C3E50; font-size: 0.85rem;'>Max Papers in Cluster</h4>
<p style='font-size: 0.9rem; font-weight: 600; color: #3498DB; margin: 0;'>{stats['Max Papers in Cluster']['value']}</p>
</div>
""", unsafe_allow_html=True)
with row2_col3:
st.markdown(f"""
<div class='metric-card' style='padding: 0.8rem; margin-bottom: 15px;'>
<h4 style='margin-top: 0; margin-bottom: 5px; color: #2C3E50; font-size: 0.85rem;'>Min Papers in Cluster</h4>
<p style='font-size: 0.9rem; font-weight: 600; color: #3498DB; margin: 0;'>{stats['Min Papers in Cluster']['value']}</p>
</div>
""", unsafe_allow_html=True)
# Back navigation button
if st.session_state.path:
if st.button('← Back', key='back_button'):
st.session_state.path.pop()
st.rerun()
# Current path display
if st.session_state.path:
# 获取路径上每个聚类的标题
path_info = []
current = data["clusters"]
# 构建路径中每个聚类的标题和层级信息
for i, cid in enumerate(st.session_state.path):
level_num = i + 1 # 从1开始的层级编号
for c in current:
if c["cluster_id"] == cid:
path_info.append((level_num, c["title"], c["cluster_id"]))
current = c["children"]
break
# 在Streamlit中创建路径导航
with st.container():
st.markdown("<h3 style='margin-top: 0.5rem; margin-bottom: 0.8rem;'>🗂️ Current Path</h3>", unsafe_allow_html=True)
# 🔝 添加 Root 入口
col1, col2 = st.columns([0.3, 0.7])
with col1:
st.markdown(f"<div><strong>Root:</strong></div>", unsafe_allow_html=True)
with col2:
if st.button("All Papers", key="root_button"):
st.session_state.path = []
st.rerun()
# 使用缩进显示路径层次结构
for i, (level_num, title, cluster_id) in enumerate(path_info):
col1, col2 = st.columns([0.3, 0.7])
with col1:
st.markdown(f"<div><strong>Level {level_num}:</strong></div>", unsafe_allow_html=True)
with col2:
# 创建用于返回到该级别的按钮
if st.button(f"{title}", key=f"lvl_{i}_{cluster_id}"):
# 当按钮被点击时,将路径截断到该级别
st.session_state.path = st.session_state.path[:i+1]
st.rerun()
# 内容展示标题
st.markdown(f"""
<h3 style='margin: 1rem 0 0.5rem 0; color: #2C3E50;'>
{'📑 Papers' if is_paper_level else '📂 ' + level_name}
</h3>
""", unsafe_allow_html=True)
for item, full_path in current_clusters:
if is_paper_level:
display_paper(item)
else:
display_cluster(item, full_path)
if __name__ == '__main__':
main() |