Spaces:
Running
Running
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型) | |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned" | |
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True) | |
emoji_model = AutoModelForCausalLM.from_pretrained( | |
emoji_model_id, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
device_map="auto" | |
) | |
# ✅ Step 2: 冒犯性文本识别模型 | |
classifier = pipeline("text-classification", model="unitary/toxic-bert", device=0 if torch.cuda.is_available() else -1) | |
def classify_emoji_text(text: str): | |
""" | |
Step 1: 翻译文本中的 emoji | |
Step 2: 使用分类器判断是否冒犯 | |
""" | |
prompt = f"""请判断下面的文本是否具有冒犯性。 | |
这里的“冒犯性”主要指包含人身攻击、侮辱、歧视、仇恨言论或极端粗俗的内容。 | |
如果文本具有冒犯性,请仅回复冒犯;如果不具有冒犯性,请仅回复不冒犯。 | |
文本如下: | |
{text} | |
""" | |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device) | |
with torch.no_grad(): | |
output_ids = emoji_model.generate(**input_ids, max_new_tokens=50, do_sample=False) | |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
translated_text = decoded.strip().split("文本如下:")[-1].strip() | |
result = classifier(translated_text)[0] | |
label = result["label"] | |
score = result["score"] | |
return translated_text, label, score | |