jenngang commited on
Commit
ca2f2ed
·
verified ·
1 Parent(s): f0548c5

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -570,9 +570,9 @@ class NutritionBot:
570
 
571
  self.client = ChatOpenAI(
572
  model_name="gpt-4o", # Specify the model to use (e.g., GPT-4 optimized version)
573
- #api_key = my_api_key, # config.get("API_KEY"), # API key for authentication
574
- #base_url = endpoint, # config.get("OPENAI_API_BASE"),
575
- #temperature=0 # Controls randomness in responses; 0 ensures deterministic results
576
  )
577
 
578
  # Define tools available to the chatbot, such as web search
@@ -590,7 +590,6 @@ class NutritionBot:
590
  Always use the agentic_rag tool to retrieve up-to-date and evidence-based nutrition insights.
591
  Keep track of ongoing issues and follow-ups to ensure continuity in support.
592
  Your primary goal is to help customers make informed nutrition decisions that align with their health conditions and personal preferences.
593
-
594
  """
595
 
596
  # Build the prompt template for the agent
@@ -678,7 +677,7 @@ class NutritionBot:
678
  context += "---\n"
679
 
680
  # Print context for debugging purposes
681
- #st.write("Context: ", context)
682
 
683
  # Prepare a prompt combining past context and the current query
684
  prompt = f"""
@@ -686,9 +685,11 @@ class NutritionBot:
686
  Current customer query: {query}
687
  Provide a helpful response that takes into account any relevant past interactions.
688
  """
 
689
 
690
  # Generate a response using the agent
691
  response = self.agent_executor.invoke({"input": prompt})
 
692
 
693
  # Store the current interaction for future reference
694
  self.store_customer_interaction(
 
570
 
571
  self.client = ChatOpenAI(
572
  model_name="gpt-4o", # Specify the model to use (e.g., GPT-4 optimized version)
573
+ api_key = api_key, # config.get("API_KEY"), # API key for authentication
574
+ base_url = endpoint, # config.get("OPENAI_API_BASE"),
575
+ temperature=0 # Controls randomness in responses; 0 ensures deterministic results
576
  )
577
 
578
  # Define tools available to the chatbot, such as web search
 
590
  Always use the agentic_rag tool to retrieve up-to-date and evidence-based nutrition insights.
591
  Keep track of ongoing issues and follow-ups to ensure continuity in support.
592
  Your primary goal is to help customers make informed nutrition decisions that align with their health conditions and personal preferences.
 
593
  """
594
 
595
  # Build the prompt template for the agent
 
677
  context += "---\n"
678
 
679
  # Print context for debugging purposes
680
+ st.write("Context: ", context)
681
 
682
  # Prepare a prompt combining past context and the current query
683
  prompt = f"""
 
685
  Current customer query: {query}
686
  Provide a helpful response that takes into account any relevant past interactions.
687
  """
688
+ st.write("Context: ", prompt)
689
 
690
  # Generate a response using the agent
691
  response = self.agent_executor.invoke({"input": prompt})
692
+ st.write("Context: ", response)
693
 
694
  # Store the current interaction for future reference
695
  self.store_customer_interaction(