Spaces:
Running
Running
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -64,12 +64,12 @@ print(f"endpoint::{endpoint}" )
|
|
64 |
#MEM0_api_key = config.get('MEM0_API_KEY') # MEM0_api_key = os.environ['mem0']
|
65 |
#my_api_key = config.get("MY_API_KEY")
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
|
74 |
# Initialize the OpenAI embedding function for Chroma
|
75 |
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
|
@@ -77,6 +77,7 @@ embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
|
|
77 |
api_key=api_key, # Complete the code to define the API key
|
78 |
model_name='text-embedding-ada-002' # This is a fixed value and does not need modification
|
79 |
)
|
|
|
80 |
|
81 |
# This initializes the OpenAI embedding function for the Chroma vectorstore, using the provided endpoint and API key.
|
82 |
|
@@ -86,6 +87,7 @@ embedding_model = OpenAIEmbeddings(
|
|
86 |
openai_api_key=api_key,
|
87 |
model='text-embedding-ada-002'
|
88 |
)
|
|
|
89 |
|
90 |
# Initialize the Chat OpenAI model
|
91 |
llm = ChatOpenAI(
|
@@ -94,6 +96,8 @@ llm = ChatOpenAI(
|
|
94 |
model="gpt-4o", # used gpt4o instead of gpt-4o-mini to get improved results
|
95 |
streaming=False
|
96 |
)
|
|
|
|
|
97 |
# This initializes the Chat OpenAI model with the provided endpoint, API key, deployment name, and a temperature setting of 0 (to control response variability).
|
98 |
|
99 |
# set the LLM and embedding model in the LlamaIndex settings.
|
|
|
64 |
#MEM0_api_key = config.get('MEM0_API_KEY') # MEM0_api_key = os.environ['mem0']
|
65 |
#my_api_key = config.get("MY_API_KEY")
|
66 |
|
67 |
+
groq_api_key = os.environ['LLAMA_API_KEY'] # llama_api_key = os.environ['GROQ_API_KEY']
|
68 |
+
print(f"groq_api_key::{groq_api_key}")
|
69 |
+
MEM0_api_key = os.environ['MEM0_API_KEY'] # MEM0_api_key = os.environ['mem0']
|
70 |
+
print(f"MEM0_api_key::{MEM0_api_key}")
|
71 |
+
my_api_key = os.environ["MY_API_KEY"]
|
72 |
+
print(f"my_api_key::{my_api_key}")
|
73 |
|
74 |
# Initialize the OpenAI embedding function for Chroma
|
75 |
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
|
|
|
77 |
api_key=api_key, # Complete the code to define the API key
|
78 |
model_name='text-embedding-ada-002' # This is a fixed value and does not need modification
|
79 |
)
|
80 |
+
print("embedding_function initialized...")
|
81 |
|
82 |
# This initializes the OpenAI embedding function for the Chroma vectorstore, using the provided endpoint and API key.
|
83 |
|
|
|
87 |
openai_api_key=api_key,
|
88 |
model='text-embedding-ada-002'
|
89 |
)
|
90 |
+
print("embedding_model initialized...")
|
91 |
|
92 |
# Initialize the Chat OpenAI model
|
93 |
llm = ChatOpenAI(
|
|
|
96 |
model="gpt-4o", # used gpt4o instead of gpt-4o-mini to get improved results
|
97 |
streaming=False
|
98 |
)
|
99 |
+
print("llm initialized...")
|
100 |
+
|
101 |
# This initializes the Chat OpenAI model with the provided endpoint, API key, deployment name, and a temperature setting of 0 (to control response variability).
|
102 |
|
103 |
# set the LLM and embedding model in the LlamaIndex settings.
|