Spaces:
Running
Running
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -67,18 +67,18 @@ my_api_key = os.environ["MY_API_KEY"]
|
|
67 |
# Initialize the OpenAI embedding function for Chroma
|
68 |
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
|
69 |
api_base=endpoint, # Complete the code to define the API base endpoint
|
70 |
-
api_key=api_key
|
71 |
-
model_name='text-embedding-ada-002' # This is a fixed value and does not need modification
|
72 |
)
|
|
|
73 |
|
74 |
# This initializes the OpenAI embedding function for the Chroma vectorstore, using the provided endpoint and API key.
|
75 |
|
76 |
# Initialize the OpenAI Embeddings
|
77 |
embedding_model = OpenAIEmbeddings(
|
78 |
openai_api_base=endpoint,
|
79 |
-
openai_api_key=api_key
|
80 |
-
model='text-embedding-ada-002'
|
81 |
)
|
|
|
82 |
|
83 |
# Initialize the Chat OpenAI model
|
84 |
llm = ChatOpenAI(
|
@@ -529,11 +529,11 @@ def agentic_rag(query: str):
|
|
529 |
|
530 |
return output
|
531 |
|
532 |
-
|
533 |
#================================ Guardrails ===========================#
|
534 |
llama_guard_client = Groq(api_key=groq_api_key) # Groq(api_key=llama_api_key)
|
535 |
# Function to filter user input with Llama Guard
|
536 |
-
def filter_input_with_llama_guard(user_input, model="llama-guard-3-8b"):
|
|
|
537 |
"""
|
538 |
Filters user input using Llama Guard to ensure it is safe.
|
539 |
|
@@ -569,9 +569,12 @@ class NutritionBot:
|
|
569 |
self.memory = MemoryClient(api_key=MEM0_api_key) # userdata.get("mem0")) # Complete the code to define the memory client API key
|
570 |
|
571 |
self.client = ChatOpenAI(
|
572 |
-
model_name="gpt-4o", # Specify the model to use (e.g., GPT-4 optimized version)
|
573 |
-
|
574 |
-
|
|
|
|
|
|
|
575 |
temperature=0 # Controls randomness in responses; 0 ensures deterministic results
|
576 |
)
|
577 |
|
|
|
67 |
# Initialize the OpenAI embedding function for Chroma
|
68 |
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
|
69 |
api_base=endpoint, # Complete the code to define the API base endpoint
|
70 |
+
api_key=api_key # Complete the code to define the API key
|
|
|
71 |
)
|
72 |
+
#model_name='text-embedding-ada-002' # This is a fixed value and does not need modification
|
73 |
|
74 |
# This initializes the OpenAI embedding function for the Chroma vectorstore, using the provided endpoint and API key.
|
75 |
|
76 |
# Initialize the OpenAI Embeddings
|
77 |
embedding_model = OpenAIEmbeddings(
|
78 |
openai_api_base=endpoint,
|
79 |
+
openai_api_key=api_key
|
|
|
80 |
)
|
81 |
+
#model='text-embedding-ada-002'
|
82 |
|
83 |
# Initialize the Chat OpenAI model
|
84 |
llm = ChatOpenAI(
|
|
|
529 |
|
530 |
return output
|
531 |
|
|
|
532 |
#================================ Guardrails ===========================#
|
533 |
llama_guard_client = Groq(api_key=groq_api_key) # Groq(api_key=llama_api_key)
|
534 |
# Function to filter user input with Llama Guard
|
535 |
+
#def filter_input_with_llama_guard(user_input, model="llama-guard-3-8b"):
|
536 |
+
def filter_input_with_llama_guard(user_input, model="meta-llama/llama-guard-4-12b"):
|
537 |
"""
|
538 |
Filters user input using Llama Guard to ensure it is safe.
|
539 |
|
|
|
569 |
self.memory = MemoryClient(api_key=MEM0_api_key) # userdata.get("mem0")) # Complete the code to define the memory client API key
|
570 |
|
571 |
self.client = ChatOpenAI(
|
572 |
+
#model_name="gpt-4o", # Specify the model to use (e.g., GPT-4 optimized version)
|
573 |
+
model="gpt-4o-mini",
|
574 |
+
#api_key = api_key, # config.get("API_KEY"), # API key for authentication
|
575 |
+
openai_api_key=api_key, # Fill in the API key
|
576 |
+
#base_url = endpoint, # config.get("OPENAI_API_BASE"),
|
577 |
+
openai_api_base=endpoint, # Fill in the endpoint
|
578 |
temperature=0 # Controls randomness in responses; 0 ensures deterministic results
|
579 |
)
|
580 |
|