File size: 13,203 Bytes
ce2ed27
 
 
 
 
 
 
 
 
 
232ff56
ce2ed27
 
232ff56
 
 
 
 
ce2ed27
232ff56
 
 
 
 
 
 
 
 
ce2ed27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232ff56
ce2ed27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232ff56
ce2ed27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232ff56
 
 
 
ce2ed27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232ff56
 
 
ce2ed27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232ff56
ce2ed27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232ff56
 
 
 
 
 
 
 
 
ce2ed27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232ff56
ce2ed27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import gradio as gr
from audio_transform_demo import AudioRedTeamOrchestrator
import os
from typing import Optional

# Define the available options for each hyperparameter
TARGET_MODELS = [
    "gpt-4o-audio-preview",
    "gemini-2.5-pro-preview-05-06",
    "gemini-2.0-flash",
    "gemini-2.5-flash-preview-04-17",
]
TTS_PROVIDERS = ["kokoro", "smallestai"]
TTS_MODELS = [
    "Kokoro-82M",
    "lightning",
    "lightning-large",
]
VOICE_IDS = [
    "af_heart (American, F, Kokoro-82M)",
    "karen (British, F, lightning)",
    "rebecca (American, F, lightning)",
    "chetan (Indian, M, lightning)",
    "george (American, M, lightning)",
    "solomon (British, M, lightning-large)",
    "saina (Indian, F, lightning)",
    "angela (British, F, lightning-large)",
    "nyah (Australian, F, lightning-large)",
]
TRANSFORM_TYPES = ["none", "speed", "pitch", "echo", "reverb", "noise"]


def create_transform_ui():
    """Create dynamic UI components for transform parameters"""
    with gr.Blocks() as transform_block:
        transform_type = gr.Dropdown(
            choices=TRANSFORM_TYPES,
            label="Transform Type",
            value="none",
            info="Select the type of audio transformation to apply",
        )

        # Speed transform parameters
        speed_rate = gr.Slider(
            minimum=0.5,
            maximum=2.0,
            value=1.0,
            step=0.1,
            label="Speed Rate",
            info="Rate of the speed effect (1.0 = original speed)",
            visible=False,
        )

        # Pitch transform parameters
        pitch_steps = gr.Slider(
            minimum=-12,
            maximum=12,
            value=4,
            step=1,
            label="Pitch Steps",
            info="Steps to shift the pitch (in semitones)",
            visible=False,
        )
        pitch_bins = gr.Slider(
            minimum=6,
            maximum=24,
            value=12,
            step=1,
            label="Bins per Octave",
            info="Steps per octave (12 = standard semitones)",
            visible=False,
        )

        # Echo transform parameters
        echo_delay = gr.Slider(
            minimum=50,
            maximum=1000,
            value=250,
            step=1,
            label="Echo Delay (ms)",
            info="Delay in milliseconds for the echo effect",
            visible=False,
        )
        echo_volume = gr.Slider(
            minimum=-20,
            maximum=0,
            value=-6,
            step=1,
            label="Echo Volume (dB)",
            info="Volume change in dB for the echo effect",
            visible=False,
        )

        # Reverb transform parameters
        reverb_rir = gr.File(
            label="Room Impulse Response File",
            file_types=[".wav"],
            visible=False,
        )
        reverb_method = gr.Radio(
            choices=["fft", "conv1d"],
            value="fft",
            label="Convolution Method",
            info="Method to use for applying reverb",
            visible=False,
        )

        # Noise transform parameters
        noise_file = gr.File(
            label="Noise File",
            file_types=[".wav"],
            visible=False,
        )
        noise_volume = gr.Slider(
            minimum=-20,
            maximum=40,
            value=-10,
            step=1,
            label="Noise Volume (dB)",
            info="Volume change in dB for the noise effect",
            visible=False,
        )

        # Function to update visible components based on transform type
        def update_transform_ui(transform_type):
            return [
                speed_rate.update(visible=transform_type == "speed"),
                pitch_steps.update(visible=transform_type == "pitch"),
                pitch_bins.update(visible=transform_type == "pitch"),
                echo_delay.update(visible=transform_type == "echo"),
                echo_volume.update(visible=transform_type == "echo"),
                reverb_rir.update(visible=transform_type == "reverb"),
                reverb_method.update(visible=transform_type == "reverb"),
                noise_file.update(visible=transform_type == "noise"),
                noise_volume.update(visible=transform_type == "noise"),
            ]

        # Connect the transform type dropdown to update the UI
        transform_type.change(
            fn=update_transform_ui,
            inputs=[transform_type],
            outputs=[
                speed_rate,
                pitch_steps,
                pitch_bins,
                echo_delay,
                echo_volume,
                reverb_rir,
                reverb_method,
                noise_file,
                noise_volume,
            ],
        )

    return transform_block, {
        "speed": {"rate": speed_rate},
        "pitch": {"n_steps": pitch_steps, "bins_per_octave": pitch_bins},
        "echo": {"delay": echo_delay, "volume": echo_volume},
        "reverb": {"rir_path": reverb_rir, "conv_method": reverb_method},
        "noise": {"noise_path": noise_file, "volume": noise_volume},
    }


def create_redteam_demo():
    def process_attack(
        prompt,
        target_model,
        tts_provider,
        tts_model,
        voice_id,
        transform_type,
        speed_rate: Optional[float] = None,
        pitch_steps: Optional[int] = None,
        pitch_bins: Optional[int] = None,
        echo_delay: Optional[int] = None,
        echo_volume: Optional[int] = None,
        reverb_rir: Optional[str] = None,
        reverb_method: Optional[str] = None,
        noise_file: Optional[str] = None,
        noise_volume: Optional[int] = None,
    ):
        # Prepare transform parameters
        # print("AAAA")
        transform_kwargs = None
        if transform_type != "none":
            if transform_type == "speed":
                transform_kwargs = {"rate": speed_rate}
            elif transform_type == "pitch":
                transform_kwargs = {
                    "n_steps": pitch_steps,
                    "bins_per_octave": pitch_bins,
                }
            elif transform_type == "echo":
                transform_kwargs = {"delay": echo_delay, "volume": echo_volume}
            elif transform_type == "reverb":
                transform_kwargs = {
                    "rir_path": reverb_rir.name if reverb_rir else None,
                    "conv_method": reverb_method,
                }
            elif transform_type == "noise":
                transform_kwargs = {
                    "noise_path": noise_file.name if noise_file else None,
                    "volume": noise_volume,
                }

        # print("BBBB")
        voice_id = voice_id.split("(")[0].strip()
        print("Voice ID: ", voice_id)
        # Initialize the orchestrator with selected parameters
        orchestrator = AudioRedTeamOrchestrator(
            tts_provider=tts_provider,
            model_name=target_model,
            voice_id=voice_id,
            tts_model=tts_model,
        )
        # print("CCCC")
        # Create a temporary directory for saving files
        save_dir = "temp_audio_files"
        os.makedirs(save_dir, exist_ok=True)

        # Generate a unique ID for this attack
        prompt_id = "attack_1"

        # print("DDDD")
        # Run the attack
        result = orchestrator.attack(
            prompt=prompt,
            prompt_id=prompt_id,
            save_dir=save_dir,
            model_name=target_model,
            generate_audio=False,
            transform_type=transform_type if transform_type != "none" else None,
            transform_kwargs=transform_kwargs,
        )

        # print("EEEE")
        print("Attack run successfully")

        if result:
            audio_path = f"{save_dir}/{prompt_id}.wav"
            if os.path.exists(audio_path):
                print("Audio file exists")
                return result, audio_path
            else:
                return result, None
        else:
            return {"Evaluation Result": "Attack failed or no response generated"}, None

    with gr.Blocks() as demo:
        prompt = gr.Textbox(label="Attack Prompt", lines=3)
        target_model = gr.Dropdown(
            choices=TARGET_MODELS, label="Target Model", value=TARGET_MODELS[0]
        )
        tts_provider = gr.Dropdown(
            choices=TTS_PROVIDERS, label="TTS Provider", value=TTS_PROVIDERS[0]
        )
        tts_model = gr.Dropdown(
            choices=TTS_MODELS, label="TTS Model", value=TTS_MODELS[0]
        )
        voice_id = gr.Dropdown(choices=VOICE_IDS, label="Voice ID", value=VOICE_IDS[0])
        transform_type = gr.Dropdown(
            choices=TRANSFORM_TYPES,
            label="Transform Type",
            value="none",
            interactive=True,
            info="Select the type of audio transformation to apply",
        )
        speed_rate = gr.Slider(
            minimum=0.5,
            maximum=2.0,
            value=1.0,
            step=0.1,
            label="Speed Rate",
            interactive=True,
            info="Rate of the speed effect (1.0 = original speed)",
            visible=False,
        )
        pitch_steps = gr.Slider(
            minimum=-12,
            maximum=12,
            value=4,
            step=1,
            label="Pitch Steps",
            interactive=True,
            info="Steps to shift the pitch (in semitones)",
            visible=False,
        )
        pitch_bins = gr.Slider(
            minimum=6,
            maximum=24,
            value=12,
            step=1,
            label="Bins per Octave",
            interactive=True,
            info="Steps per octave (12 = standard semitones)",
            visible=False,
        )
        echo_delay = gr.Slider(
            minimum=50,
            maximum=1000,
            value=250,
            step=1,
            label="Echo Delay (ms)",
            interactive=True,
            info="Delay in milliseconds for the echo effect",
            visible=False,
        )
        echo_volume = gr.Slider(
            minimum=-20,
            maximum=0,
            value=-6,
            step=1,
            label="Echo Volume (dB)",
            interactive=True,
            info="Volume change in dB for the echo effect",
            visible=False,
        )
        reverb_rir = gr.File(
            label="Room Impulse Response File",
            file_types=[".wav"],
            interactive=True,
            visible=False,
        )
        reverb_method = gr.Radio(
            choices=["fft", "conv1d"],
            value="fft",
            label="Convolution Method",
            interactive=True,
            info="Method to use for applying reverb",
            visible=False,
        )
        noise_file = gr.File(
            label="Noise File",
            file_types=[".wav"],
            interactive=True,
            visible=False,
        )
        noise_volume = gr.Slider(
            minimum=-20,
            maximum=40,
            value=-10,
            step=1,
            label="Noise Volume (dB)",
            interactive=True,
            info="Volume change in dB for the noise effect",
            visible=False,
        )

        # Function to update visible components based on transform type
        def update_transform_ui(transform_type):
            return [
                gr.update(visible=transform_type == "speed"),
                gr.update(visible=transform_type == "pitch"),
                gr.update(visible=transform_type == "pitch"),
                gr.update(visible=transform_type == "echo"),
                gr.update(visible=transform_type == "echo"),
                gr.update(visible=transform_type == "reverb"),
                gr.update(visible=transform_type == "reverb"),
                gr.update(visible=transform_type == "noise"),
                gr.update(visible=transform_type == "noise"),
            ]

        # print("FFFF")

        transform_type.change(
            fn=update_transform_ui,
            inputs=[transform_type],
            outputs=[
                speed_rate,
                pitch_steps,
                pitch_bins,
                echo_delay,
                echo_volume,
                reverb_rir,
                reverb_method,
                noise_file,
                noise_volume,
            ],
        )

        # print("GGGG")
        btn = gr.Button("Run Attack")
        out_json = gr.JSON()
        out_audio = gr.Audio()
        # print("HHHH")

        btn.click(
            fn=process_attack,
            inputs=[
                prompt,
                target_model,
                tts_provider,
                tts_model,
                voice_id,
                transform_type,
                speed_rate,
                pitch_steps,
                pitch_bins,
                echo_delay,
                echo_volume,
                reverb_rir,
                reverb_method,
                noise_file,
                noise_volume,
            ],
            outputs=[out_json, out_audio],
        )

    return demo


if __name__ == "__main__":
    demo = create_redteam_demo()
    demo.launch(share=True)