Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,21 @@
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
-
|
4 |
-
|
5 |
-
import
|
6 |
-
|
7 |
-
|
|
|
8 |
lang_detect_model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
|
9 |
lang_detect_tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
|
10 |
trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
11 |
trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
|
|
12 |
|
13 |
-
# Language
|
14 |
id2lang = lang_detect_model.config.id2label
|
15 |
|
16 |
nllb_langs = {
|
@@ -26,7 +31,14 @@ xlm_to_nllb = {
|
|
26 |
"sa": "san_Deva"
|
27 |
}
|
28 |
|
29 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def detect_language(text):
|
31 |
inputs = lang_detect_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
32 |
with torch.no_grad():
|
@@ -35,30 +47,169 @@ def detect_language(text):
|
|
35 |
pred = torch.argmax(probs, dim=1).item()
|
36 |
return id2lang[pred]
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Translation
|
39 |
-
def
|
40 |
-
|
41 |
-
|
42 |
-
trans_tokenizer.src_lang = src_nllb
|
43 |
-
encoded = trans_tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
44 |
try:
|
45 |
-
|
46 |
-
generated = trans_model.generate(**encoded, forced_bos_token_id=
|
47 |
-
|
48 |
-
return f"Detected: {detected}\n\nTranslated:\n{result}"
|
49 |
except:
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
inputs=[
|
56 |
-
gr.Textbox(label="Input Text", lines=
|
57 |
-
gr.Dropdown(choices=list(nllb_langs.keys()),
|
|
|
58 |
],
|
59 |
-
outputs=
|
60 |
-
|
61 |
-
|
62 |
-
)
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import Libraries
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
import torch
|
5 |
import torch.nn.functional as F
|
6 |
+
import faiss
|
7 |
+
import numpy as np
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import os
|
10 |
+
from google.colab import files
|
11 |
+
# Load Models
|
12 |
lang_detect_model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
|
13 |
lang_detect_tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
|
14 |
trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
15 |
trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
16 |
+
embed_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
17 |
|
18 |
+
# Language Code Mappings
|
19 |
id2lang = lang_detect_model.config.id2label
|
20 |
|
21 |
nllb_langs = {
|
|
|
31 |
"sa": "san_Deva"
|
32 |
}
|
33 |
|
34 |
+
# Get input directly
|
35 |
+
input_text = input("✍️ Enter your text here for translation:\n").strip()
|
36 |
+
|
37 |
+
if not input_text:
|
38 |
+
print("🚫 No input text provided. Exiting.")
|
39 |
+
raise SystemExit
|
40 |
+
|
41 |
+
# Language detection
|
42 |
def detect_language(text):
|
43 |
inputs = lang_detect_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
44 |
with torch.no_grad():
|
|
|
47 |
pred = torch.argmax(probs, dim=1).item()
|
48 |
return id2lang[pred]
|
49 |
|
50 |
+
if input_text.strip():
|
51 |
+
detected_lang = detect_language(input_text)
|
52 |
+
print(f"\n🔍 Detected Language Code: {detected_lang}")
|
53 |
+
else:
|
54 |
+
print("🚫 Empty input text. Exiting.")
|
55 |
+
raise SystemExit
|
56 |
+
|
57 |
+
# Choose target language
|
58 |
+
print("\n🌐 Available Output Languages:")
|
59 |
+
for code, lang in nllb_langs.items():
|
60 |
+
print(f"{code} → {lang}")
|
61 |
+
|
62 |
+
target_code = input("\n🔤 Enter target language code (e.g., eng_Latn): ").strip()
|
63 |
+
if target_code not in nllb_langs:
|
64 |
+
print("❌ Invalid code. Defaulting to English (eng_Latn).")
|
65 |
+
target_code = "eng_Latn"
|
66 |
+
|
67 |
# Translation
|
68 |
+
def translate(text, src_code, tgt_code):
|
69 |
+
trans_tokenizer.src_lang = src_code
|
70 |
+
encoded = trans_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
|
|
|
|
71 |
try:
|
72 |
+
target_lang_id = trans_tokenizer.convert_tokens_to_ids([tgt_code])[0]
|
73 |
+
generated = trans_model.generate(**encoded, forced_bos_token_id=target_lang_id)
|
74 |
+
return trans_tokenizer.decode(generated[0], skip_special_tokens=True)
|
|
|
75 |
except:
|
76 |
+
print("❌ Translation failed.")
|
77 |
+
return ""
|
78 |
+
|
79 |
+
src_nllb = xlm_to_nllb.get(detected_lang, "eng_Latn")
|
80 |
+
print(f"\n📜 Text to Translate:\n{input_text}\n")
|
81 |
+
print(f"🌍 Source Language: {src_nllb} → Target Language: {target_code}")
|
82 |
+
|
83 |
+
translated_text = translate(input_text, src_nllb, target_code)
|
84 |
+
# Output translated text
|
85 |
+
if translated_text.strip():
|
86 |
+
print("\n✅ Translation Complete!\n")
|
87 |
+
print("🔸 Translated Text:\n")
|
88 |
+
print(translated_text)
|
89 |
+
|
90 |
+
with open("translated_output.txt", "w", encoding="utf-8") as f:
|
91 |
+
f.write(translated_text)
|
92 |
+
files.download("translated_output.txt")
|
93 |
+
else:
|
94 |
+
print("❌ No translated text produced.")
|
95 |
+
raise SystemExit
|
96 |
+
#Create Corpus and FAISS Index
|
97 |
+
corpus = [
|
98 |
+
"धर्म एव हतो हन्ति धर्मो रक्षति रक्षितः",
|
99 |
+
"Dharma when destroyed, destroys; when protected, protects.",
|
100 |
+
"The moon affects tides and mood, according to Jyotisha",
|
101 |
+
"One should eat according to the season – Rituacharya",
|
102 |
+
"Balance of Tridosha is health – Ayurveda principle",
|
103 |
+
"Ethics in Mahabharata reflect situational dharma",
|
104 |
+
"Meditation improves memory and mental clarity",
|
105 |
+
"Jyotisha links planetary motion with life patterns"
|
106 |
+
]
|
107 |
+
|
108 |
+
corpus_embeddings = embed_model.encode(corpus, convert_to_numpy=True)
|
109 |
+
dimension = corpus_embeddings.shape[1]
|
110 |
+
index = faiss.IndexFlatL2(dimension)
|
111 |
+
index.add(corpus_embeddings)
|
112 |
+
|
113 |
+
|
114 |
+
# Semantic Search Function
|
115 |
+
def search_semantic(query, top_k=3):
|
116 |
+
query_embedding = embed_model.encode([query])
|
117 |
+
distances, indices = index.search(query_embedding, top_k)
|
118 |
+
return [(corpus[i], float(distances[0][idx])) for idx, i in enumerate(indices[0])]
|
119 |
+
|
120 |
+
# Perform Semantic Search
|
121 |
+
print("\n🔎 Searching for similar Sanskrit knowledge...")
|
122 |
+
results = search_semantic(translated_text)
|
123 |
+
|
124 |
+
print("\n🔍 Top Semantic Matches:")
|
125 |
+
for i, (text, score) in enumerate(results, 1):
|
126 |
+
print(f"\n{i}. {text}\n Similarity Score: {score:.4f}")
|
127 |
+
|
128 |
+
# Visualize Semantic Scores
|
129 |
+
labels = [f"{i+1}. Match {i+1}" for i in range(len(results))]
|
130 |
+
scores = [score for _, score in results]
|
131 |
|
132 |
+
plt.figure(figsize=(10, 6))
|
133 |
+
bars = plt.barh(labels, scores, color="skyblue")
|
134 |
+
|
135 |
+
plt.xlabel("Similarity Score", fontsize=12)
|
136 |
+
plt.title("Top Semantic Matches", fontsize=14)
|
137 |
+
plt.gca().invert_yaxis()
|
138 |
+
|
139 |
+
for bar in bars:
|
140 |
+
plt.text(bar.get_width() + 0.5, bar.get_y() + 0.25, f"{bar.get_width():.2f}", fontsize=10)
|
141 |
+
|
142 |
+
plt.tight_layout()
|
143 |
+
plt.savefig("semantic_similarity_plot.png")
|
144 |
+
plt.show()
|
145 |
+
|
146 |
+
files.download("semantic_similarity_plot.png")
|
147 |
+
|
148 |
+
# BLEU Score Evaluation
|
149 |
+
from sacrebleu import corpus_bleu
|
150 |
+
|
151 |
+
reference = input("📘 Enter correct human translation (for BLEU evaluation): ").strip()
|
152 |
+
if reference:
|
153 |
+
bleu = corpus_bleu([translated_text], [[reference]])
|
154 |
+
print(f"\n📏 BLEU Score: {bleu.score:.2f}")
|
155 |
+
else:
|
156 |
+
print("ℹ️ BLEU evaluation skipped (no reference entered).")
|
157 |
+
|
158 |
+
# ✅ Gradio App Interface
|
159 |
+
import gradio as gr
|
160 |
+
import matplotlib.pyplot as plt
|
161 |
+
from sacrebleu import corpus_bleu
|
162 |
+
|
163 |
+
def full_pipeline(user_input_text, target_lang_code, human_ref=""):
|
164 |
+
if not user_input_text.strip():
|
165 |
+
return "⚠️ Empty input", "", [], "", ""
|
166 |
+
|
167 |
+
detected_lang = detect_language(user_input_text)
|
168 |
+
src_nllb = xlm_to_nllb.get(detected_lang, "eng_Latn")
|
169 |
+
|
170 |
+
translated = translate(user_input_text, src_nllb, target_lang_code)
|
171 |
+
if not translated:
|
172 |
+
return detected_lang, "❌ Translation failed", [], "", ""
|
173 |
+
|
174 |
+
sem_results = search_semantic(translated)
|
175 |
+
result_list = [f"{i+1}. {txt} (Score: {score:.2f})" for i, (txt, score) in enumerate(sem_results)]
|
176 |
+
|
177 |
+
labels = [f"{i+1}" for i in range(len(sem_results))]
|
178 |
+
scores = [score for _, score in sem_results]
|
179 |
+
plt.figure(figsize=(6, 4))
|
180 |
+
bars = plt.barh(labels, scores, color="lightgreen")
|
181 |
+
plt.xlabel("Similarity Score")
|
182 |
+
plt.title("Top Semantic Matches")
|
183 |
+
plt.gca().invert_yaxis()
|
184 |
+
for bar in bars:
|
185 |
+
plt.text(bar.get_width() + 0.01, bar.get_y() + 0.1, f"{bar.get_width():.2f}", fontsize=8)
|
186 |
+
plt.tight_layout()
|
187 |
+
plot_path = "/tmp/sem_plot.png"
|
188 |
+
plt.savefig(plot_path)
|
189 |
+
plt.close()
|
190 |
+
|
191 |
+
bleu_score = ""
|
192 |
+
if human_ref.strip():
|
193 |
+
bleu = corpus_bleu([translated], [[human_ref]])
|
194 |
+
bleu_score = f"{bleu.score:.2f}"
|
195 |
+
|
196 |
+
return detected_lang, translated, result_list, plot_path, bleu_score
|
197 |
+
|
198 |
+
# 🚀 Launch Gradio Interface
|
199 |
+
gr.Interface(
|
200 |
+
fn=full_pipeline,
|
201 |
inputs=[
|
202 |
+
gr.Textbox(label="Input Text", lines=4, placeholder="Enter text to translate..."),
|
203 |
+
gr.Dropdown(label="Target Language", choices=list(nllb_langs.keys()), value="eng_Latn"),
|
204 |
+
gr.Textbox(label="(Optional) Human Reference Translation", lines=2, placeholder="Paste human translation here (for BLEU)...")
|
205 |
],
|
206 |
+
outputs=[
|
207 |
+
gr.Textbox(label="Detected Language"),
|
208 |
+
gr.Textbox(label="Translated Text"),
|
209 |
+
gr.Textbox(label="Top Semantic Matches"),
|
210 |
+
gr.Image(label="Semantic Similarity Plot"),
|
211 |
+
gr.Textbox(label="BLEU Score")
|
212 |
+
],
|
213 |
+
title="🌍 Multilingual Translator + Semantic Search",
|
214 |
+
description="Detects language → Translates → Finds related Sanskrit concepts → BLEU optional."
|
215 |
+
).launch(debug=True)
|