Create multilingual translator code
Browse files- multiligual translator code +64 -0
multiligual translator code
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Load models
|
8 |
+
lang_detect_model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
|
9 |
+
lang_detect_tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
|
10 |
+
trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
11 |
+
trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
12 |
+
|
13 |
+
# Language maps
|
14 |
+
id2lang = lang_detect_model.config.id2label
|
15 |
+
|
16 |
+
nllb_langs = {
|
17 |
+
"eng_Latn": "English", "fra_Latn": "French", "hin_Deva": "Hindi",
|
18 |
+
"spa_Latn": "Spanish", "deu_Latn": "German", "tam_Taml": "Tamil",
|
19 |
+
"tel_Telu": "Telugu", "jpn_Jpan": "Japanese", "zho_Hans": "Chinese",
|
20 |
+
"arb_Arab": "Arabic", "san_Deva": "Sanskrit"
|
21 |
+
}
|
22 |
+
|
23 |
+
xlm_to_nllb = {
|
24 |
+
"en": "eng_Latn", "fr": "fra_Latn", "hi": "hin_Deva", "es": "spa_Latn", "de": "deu_Latn",
|
25 |
+
"ta": "tam_Taml", "te": "tel_Telu", "ja": "jpn_Jpan", "zh": "zho_Hans", "ar": "arb_Arab",
|
26 |
+
"sa": "san_Deva"
|
27 |
+
}
|
28 |
+
|
29 |
+
# Detection
|
30 |
+
def detect_language(text):
|
31 |
+
inputs = lang_detect_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = lang_detect_model(**inputs)
|
34 |
+
probs = F.softmax(outputs.logits, dim=1)
|
35 |
+
pred = torch.argmax(probs, dim=1).item()
|
36 |
+
return id2lang[pred]
|
37 |
+
|
38 |
+
# Translation
|
39 |
+
def translate_text(input_text, target_code):
|
40 |
+
detected = detect_language(input_text)
|
41 |
+
src_nllb = xlm_to_nllb.get(detected, "eng_Latn")
|
42 |
+
trans_tokenizer.src_lang = src_nllb
|
43 |
+
encoded = trans_tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
44 |
+
try:
|
45 |
+
lang_id = trans_tokenizer.convert_tokens_to_ids([target_code])[0]
|
46 |
+
generated = trans_model.generate(**encoded, forced_bos_token_id=lang_id)
|
47 |
+
result = trans_tokenizer.decode(generated[0], skip_special_tokens=True)
|
48 |
+
return f"Detected: {detected}\n\nTranslated:\n{result}"
|
49 |
+
except:
|
50 |
+
return "Translation failed."
|
51 |
+
|
52 |
+
# Gradio UI
|
53 |
+
demo = gr.Interface(
|
54 |
+
fn=translate_text,
|
55 |
+
inputs=[
|
56 |
+
gr.Textbox(label="Input Text", lines=6),
|
57 |
+
gr.Dropdown(choices=list(nllb_langs.keys()), label="Target Language")
|
58 |
+
],
|
59 |
+
outputs="text",
|
60 |
+
title="Multilingual Text Translator 🌍",
|
61 |
+
description="Enter your text and select a target language to translate."
|
62 |
+
)
|
63 |
+
|
64 |
+
demo.launch()
|