|
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM |
|
from sentence_transformers import SentenceTransformer |
|
import torch |
|
import torch.nn.functional as F |
|
import faiss |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import gradio as gr |
|
from sacrebleu import corpus_bleu |
|
import os |
|
|
|
|
|
lang_detect_model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection") |
|
lang_detect_tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection") |
|
trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") |
|
trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") |
|
embed_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") |
|
|
|
|
|
id2lang = lang_detect_model.config.id2label |
|
|
|
nllb_langs = { |
|
"eng_Latn": "English", "fra_Latn": "French", "hin_Deva": "Hindi", |
|
"spa_Latn": "Spanish", "deu_Latn": "German", "tam_Taml": "Tamil", |
|
"tel_Telu": "Telugu", "jpn_Jpan": "Japanese", "zho_Hans": "Chinese", |
|
"arb_Arab": "Arabic", "san_Deva": "Sanskrit" |
|
} |
|
|
|
xlm_to_nllb = { |
|
"en": "eng_Latn", "fr": "fra_Latn", "hi": "hin_Deva", "es": "spa_Latn", "de": "deu_Latn", |
|
"ta": "tam_Taml", "te": "tel_Telu", "ja": "jpn_Jpan", "zh": "zho_Hans", "ar": "arb_Arab", |
|
"sa": "san_Deva" |
|
} |
|
|
|
|
|
corpus = [ |
|
"धर्म एव हतो हन्ति धर्मो रक्षति रक्षितः", |
|
"Dharma when destroyed, destroys; when protected, protects.", |
|
"The moon affects tides and mood, according to Jyotisha", |
|
"One should eat according to the season – Rituacharya", |
|
"Balance of Tridosha is health – Ayurveda principle", |
|
"Ethics in Mahabharata reflect situational dharma", |
|
"Meditation improves memory and mental clarity", |
|
"Jyotisha links planetary motion with life patterns" |
|
] |
|
corpus_embeddings = embed_model.encode(corpus, convert_to_numpy=True) |
|
dimension = corpus_embeddings.shape[1] |
|
index = faiss.IndexFlatL2(dimension) |
|
index.add(corpus_embeddings) |
|
|
|
|
|
def detect_language(text): |
|
inputs = lang_detect_tokenizer(text, return_tensors="pt", truncation=True, padding=True) |
|
with torch.no_grad(): |
|
outputs = lang_detect_model(**inputs) |
|
probs = F.softmax(outputs.logits, dim=1) |
|
pred = torch.argmax(probs, dim=1).item() |
|
return id2lang[pred] |
|
|
|
|
|
def translate(text, src_code, tgt_code): |
|
trans_tokenizer.src_lang = src_code |
|
encoded = trans_tokenizer(text, return_tensors="pt", truncation=True, padding=True) |
|
try: |
|
target_lang_id = trans_tokenizer.convert_tokens_to_ids([tgt_code])[0] |
|
generated = trans_model.generate(**encoded, forced_bos_token_id=target_lang_id) |
|
return trans_tokenizer.decode(generated[0], skip_special_tokens=True) |
|
except: |
|
return "" |
|
|
|
|
|
def search_semantic(query, top_k=3): |
|
query_embedding = embed_model.encode([query]) |
|
distances, indices = index.search(query_embedding, top_k) |
|
return [(corpus[i], float(distances[0][idx])) for idx, i in enumerate(indices[0])] |
|
|
|
|
|
def full_pipeline(user_input_text, target_lang_code, human_ref=""): |
|
if not user_input_text.strip(): |
|
return "⚠️ Empty input", "", [], "", "" |
|
|
|
detected_lang = detect_language(user_input_text) |
|
src_nllb = xlm_to_nllb.get(detected_lang, "eng_Latn") |
|
|
|
translated = translate(user_input_text, src_nllb, target_lang_code) |
|
if not translated: |
|
return detected_lang, "❌ Translation failed", [], "", "" |
|
|
|
sem_results = search_semantic(translated) |
|
result_list = [f"{i+1}. {txt} (Score: {score:.2f})" for i, (txt, score) in enumerate(sem_results)] |
|
|
|
|
|
labels = [f"{i+1}" for i in range(len(sem_results))] |
|
scores = [score for _, score in sem_results] |
|
plt.figure(figsize=(6, 4)) |
|
bars = plt.barh(labels, scores, color="lightgreen") |
|
plt.xlabel("Similarity Score") |
|
plt.title("Top Semantic Matches") |
|
plt.gca().invert_yaxis() |
|
for bar in bars: |
|
plt.text(bar.get_width() + 0.01, bar.get_y() + 0.1, f"{bar.get_width():.2f}", fontsize=8) |
|
plt.tight_layout() |
|
plot_path = "/tmp/sem_plot.png" |
|
plt.savefig(plot_path) |
|
plt.close() |
|
|
|
bleu_score = "" |
|
if human_ref.strip(): |
|
bleu = corpus_bleu([translated], [[human_ref]]) |
|
bleu_score = f"{bleu.score:.2f}" |
|
|
|
return detected_lang, translated, result_list, plot_path, bleu_score |
|
|
|
|
|
gr.Interface( |
|
fn=full_pipeline, |
|
inputs=[ |
|
gr.Textbox(label="Input Text", lines=4, placeholder="Enter text to translate..."), |
|
gr.Dropdown(label="Target Language", choices=list(nllb_langs.keys()), value="eng_Latn"), |
|
gr.Textbox(label="(Optional) Human Reference Translation", lines=2, placeholder="Paste human translation here (for BLEU)...") |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Detected Language"), |
|
gr.Textbox(label="Translated Text"), |
|
gr.Textbox(label="Top Semantic Matches"), |
|
gr.Image(label="Semantic Similarity Plot"), |
|
gr.Textbox(label="BLEU Score") |
|
], |
|
title="🌍 Multilingual Translator + Semantic Search", |
|
description="Detects language → Translates → Finds related Sanskrit concepts → BLEU optional." |
|
).launch() |
|
|