File size: 1,366 Bytes
3d8dbe8
8b1f7a0
 
3b3db42
 
01ea22b
29546b4
3d8dbe8
 
 
91e8a06
8b1f7a0
 
 
 
 
 
 
 
 
 
 
29546b4
3d8dbe8
 
 
 
bc7425f
3d8dbe8
 
 
 
 
8b1f7a0
29546b4
8b1f7a0
3d8dbe8
8b1f7a0
2a860f6
 
8b1f7a0
 
 
 
ceb2102
8b1f7a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks

def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False

## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)

## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji

# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]